1
|
He Y, Tian CY, Wei S, Han Z, Hu HS, Li J. Computational Explorations of Th 4+ First Hydrolysis Reaction Constants: Insights from Ab Initio Molecular Dynamics and Density Functional Theory Calculations. J Phys Chem A 2025; 129:1042-1050. [PMID: 39818828 DOI: 10.1021/acs.jpca.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The fundamental hydrolysis behavior of tetravalent actinide cations (An4+) with a high charge is crucial for understanding their solution chemistry, particularly in nuclear fuel reprocessing and environmental behavior. Using Th4+ as a reference of the An4+ series, this work employed both the periodic model and the cluster model to calculate the first hydrolysis reaction constant (pKa1) of the Th4+ aqua ion and conducted a detailed evaluation of these approaches. In the periodic model, ab initio molecular dynamics (AIMD) simulations of Th4+ in the explicit solvation environment are conducted, using metadynamics and constrained molecular dynamics to calculate pKa1 values. Metadynamics simulations with sufficient sampling yielded a value of 5.02, aligning with the experimental values (4.12-4.97). Moreover, AIMD results reveal further Grotthuss-type proton transfers and changes in the solvent structures, which are important for accurately modeling the hydrolysis process. In the cluster model, density functional theory calculations are performed on isolated hydrate clusters to obtain pKa1 values, describing solvation effects through the cluster-continuum model. Based on insights from the periodic models, particularly regarding further proton transfer, the cluster model was modified and tested using different functionals and similar cations (La3+and Ac3+). The pKa1 values obtained in the cluster model also show good agreement with the experimental values. The current computational approaches provide a comprehensive understanding of Th4+ hydrolysis and a reference framework for studying the hydrolysis of other lanthanide and actinide ions.
Collapse
Affiliation(s)
- Yang He
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chang-Yi Tian
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shiru Wei
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zongchang Han
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Raposo-Hernández G, Pappalardo RR, Réal F, Vallet V, Sánchez Marcos E. Toward a realistic theoretical electronic spectra of metal aqua ions in solution: The case of Ce(H2O)n3+ using statistical methods and quantum chemistry calculations. J Chem Phys 2024; 161:144109. [PMID: 39387406 DOI: 10.1063/5.0228155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Accurately predicting spectra for heavy elements, often open-shell systems, is a significant challenge typically addressed using a single cluster approach with a fixed coordination number. Developing a realistic model that accounts for temperature effects, variable coordination numbers, and interprets experimental data is even more demanding due to the strong solute-solvent interactions present in solutions of heavy metal cations. This study addresses these challenges by combining multiple methodologies to accurately predict realistic spectra for highly charged metal cations in aqueous media, with a focus on the electronic absorption spectrum of Ce3+ in water. Utilizing highly correlated relativistic quantum mechanical (QM) wavefunctions and structures from molecular dynamics (MD) simulations, we show that the convolution of individual vertical transitions yields excellent agreement with experimental results without the introduction of empirical broadening. Good results are obtained for both the normalized spectrum and that of absolute intensity. The study incorporates a statistical machine learning algorithm, Gaussian Mixture Models-Nuclear Ensemble Approach (GMM-NEA), to convolute individual spectra. The microscopic distribution provided by MD simulations allows us to examine the contributions of the octa- and ennea-hydrate of Ce3+ in water to the final spectrum. In addition, the temperature dependence of the spectrum is theoretically captured by observing the changing population of these hydrate forms with temperature. We also explore an alternative method for obtaining statistically representative structures in a less demanding manner than MD simulations, derived from QM Wigner distributions. The combination of Wigner-sampling and GMM-NEA broadening shows promise for wide application in spectroscopic analysis and predictions, offering a computationally efficient alternative to traditional methods.
Collapse
Affiliation(s)
| | - Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain
| | - Florent Réal
- Université de Lille, CNRS, UMR 8523-PhLAM, Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - Valérie Vallet
- Université de Lille, CNRS, UMR 8523-PhLAM, Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | | |
Collapse
|
3
|
McElhany SJ, Summers TJ, Shiery RC, Cantu DC. Analysis of the First Ion Coordination Sphere: A Toolkit to Analyze the Coordination Sphere of Ions. J Chem Inf Model 2023; 63:2699-2706. [PMID: 37083437 DOI: 10.1021/acs.jcim.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Rapid and accurate approaches to characterizing the coordination structure of an ion are important for designing ligands and quantifying structure-property trends. Here, we introduce AFICS (Analysis of the First Ion Coordination Sphere), a tool written in Python 3 for analyzing the structural and geometric features of the first coordination sphere of an ion over the course of molecular dynamics simulations. The principal feature of AFICS is its ability to quantify the distortion a coordination geometry undergoes compared to uniform polyhedra. This work applies the toolkit to analyze molecular dynamics simulations of the well-defined coordination structure of aqueous Cr3+ along with the more ambiguous structure of aqueous Eu3+ chelated to ethylenediaminetetraacetic acid. The tool is targeted for analyzing ions with fluxional or irregular coordination structures (e.g., solution structures of f-block elements) but is generalized such that it may be applied to other systems.
Collapse
Affiliation(s)
- Stuart J McElhany
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Richard C Shiery
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Tomeček J, Li C, Schreckenbach G. Actinium coordination chemistry: A density functional theory study with monodentate and bidentate ligands. J Comput Chem 2023; 44:334-345. [PMID: 35668552 DOI: 10.1002/jcc.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
In the current study, the coordination chemistry of nine-coordinate Ac(III) complexes with 35 monodentate and bidentate ligands was investigated using density functional theory (DFT) in terms of their geometries, charges, reaction energies, and bonding interactions. The energy decomposition analysis with naturals orbitals for chemical valence (EDA-NOCV) and the quantum theory of atoms in molecules (QTAIM) were employed as analysis methods. Trivalent Ac exhibits the highest affinities toward hard acids (such as charged oxophilic donors, fluoride), so its classification as a hard acid is justified. Natural population analysis quantified the involvement of 5f orbitals on Ac to be about 30% of total valence electron natural configuration indicating that Ac is a member of the actinide series. Pearson correlation coefficients were used to study the pairwise correlations among the bond lengths, ΔG reaction energies, charges on Ac and donor atoms, and data from EDA-NOCV and QTAIM. Strong correlations and anticorrelations were found between Voronoi charges on donor atoms with ΔG, EDA-NOCV interaction energies and QTAIM bond critical point densities.
Collapse
Affiliation(s)
- Josef Tomeček
- Department of Chemistry, Imperial College London, London, UK.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cen Li
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
5
|
Raposo-Hernández G, Martínez JM, Pappalardo RR, Den Auwer C, Sánchez Marcos E. A Coupled EXAFS-Molecular Dynamics Study on PuO 2+ and NpO 2+ Hydration: The Importance of Electron Correlation in Force-Field Building. Inorg Chem 2022; 61:8703-8714. [PMID: 35616567 PMCID: PMC9199009 DOI: 10.1021/acs.inorgchem.2c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physicochemical properties of the monovalent actinyl cations, PuO2+ and NpO2+, in water have been studied by means of classical molecular dynamic simulations. A specific set of cation-water intermolecular potentials based on ab initio potential energy surfaces has been built on the basis of the hydrated ion concept. The TIP4P water model was adopted. Given the paramagnetic character of these actinyls, the cation-water interaction energies were computed from highly correlated wave functions using the NEVPT2 method. It is shown that the multideterminantal character of the wave function has a relevant effect on the main distances of the hydrated molecular cations. Several structural, dynamical, and energetic properties of the aqueous solutions have been obtained and analyzed. Structural RDF analysis gives An-Oyl distances of 1.82 and 1.84 Å and An-O(water) distances of 2.51 and 2.53 Å for PuO2+ and NpO2+ in water, respectively. Experimental EXAFS spectra from dilute aqueous solutions of PuO2+ and NpO2+ are revisited and analyzed, assuming tetra- and pentahydration of the actinyl cations. Simulated EXAFS spectra have been computed from the snapshots of the MD simulations. Good agreement with the experimental information available is found. The global analysis leads us to conclude that both PuO2+ and NpO2+ cations in water are stable pentahydrated aqua ions.
Collapse
Affiliation(s)
| | - José M Martínez
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain
| | - Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain
| | | | | |
Collapse
|
6
|
Deblonde GJP, Zavarin M, Kersting AB. The coordination properties and ionic radius of actinium: A 120-year-old enigma. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Pappalardo RR, Caralampio DZ, Martínez JM, Sánchez Marcos E. Hydration of Heavy Alkaline-Earth Cations Studied by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. Inorg Chem 2021; 60:13578-13587. [PMID: 34387993 PMCID: PMC8512670 DOI: 10.1021/acs.inorgchem.1c01888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physicochemical properties of the three heaviest alkaline-earth cations, Sr2+, Ba2+, and Ra2+ in water have been studied by means of classical molecular dynamics (MD) simulations. A specific set of cation-water intermolecular potentials based on ab initio potential energy surfaces has been built on the basis of the hydrated ion concept. The polarizable and flexible model of water MCDHO2 was adopted. The theoretical-experimental comparison of structural, dynamical, energetic, and spectroscopical properties of Sr2+ and Ba2+ aqueous solutions is satisfactory, which supports the methodology developed. This good behavior allows a reasonable reliability for the predicted Ra2+ physicochemical data not experimentally determined yet. Simulated extended X-ray absorption fine-structure (EXAFS) and X-ray absorption near-edge spectroscopy spectra have been computed from the snapshots of the MD simulations and compared with the experimental information available for Sr2+ and Ba2+. For the Ra2+ case, the Ra L3-edge EXAFS spectrum is proposed. Structural and dynamical properties of the aqua ions for the three cations have been obtained and analyzed. Along the [M(H2O)n]m+ series, the M-O distance for the first-hydration shell is 2.57, 2.81, and 2.93 Å for Sr2+, Ba2+, and Ra2+, respectively. The hydration number also increases when one is going down along the group: 8.1, 9.4, and 9.8 for Sr2+, Ba2+, and Ra2+, respectively. Whereas [Sr(H2O)8]2+ is a typical aqua ion with a well-defined structure, the Ba2+ and Ra2+ hydration provides a picture exhibiting an average between the ennea- and the deca-hydration. These results show a similar chemical behavior of Ba2+ and Ra2+ aqueous solutions and support experimental studies on the removal of Ra-226 of aquifers by different techniques, where Ra2+ is replaced by Ba2+. A comparison of the heavy alkaline ions, Rb+ and Cs+, with the heavy alkaline-earth ions is made.
Collapse
Affiliation(s)
- Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | - Daniel Z Caralampio
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | - José M Martínez
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | | |
Collapse
|
8
|
León-Pimentel CI, Saint-Martin H, Ramírez-Solís A. Mg(II) and Ca(II) Microsolvation by Ammonia: Born-Oppenheimer Molecular Dynamics Studies. J Phys Chem A 2021; 125:4565-4577. [PMID: 34029097 DOI: 10.1021/acs.jpca.1c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the structural and energetic features of the Mg2+ and Ca2+ cations in ammonia microsolvation environments. Born-Oppenhemier molecular dynamics studies are carried out for [Mg(NH3)n]2+ and [Ca(NH3)n]2+ clusters with n = 2, 3, 4, 6, 8, 20, and 27 at 300 K based on hybrid density functional theory calculations. We determine binding energies per ammonia molecule and the metal cation solvation patterns as a function of the number of molecules. The general trend for Mg2+ is that the Mg-N distances increase as a function of n until the first solvation shell is populated by six ammonia molecules, and then the distances slightly decrease while CN = 6 does not change. For Ca2+, the first solvation shell at room temperature is populated by eight ammonia molecules for clusters with more than one solvation shell, leading to a different structure from that of [Ca(NH3)6]2+ hexamine. The evaporation of NH3 molecules was found at 300 K only for Mg2+ clusters with n ≥ 10; this was not the case for Ca2+ clusters. Vibrational spectra are obtained for all of the clusters, and the evolution of the main features is discussed. EXAFS spectra are also presented for the [Mg(NH3)27(NH3)27]2+ and [Ca(NH3)27]2+ clusters, which yield valuable data to be compared with experimental data in the liquid phase, as previously done for the aqueous solvation of these dications.
Collapse
Affiliation(s)
- C I León-Pimentel
- Departamento de Física, Centro de Investigación en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| | - H Saint-Martin
- Instituto de Ciencias Físicas, Universidad Nacional Autonóna de México, Cuernvaca, Morelos 62210 México
| | - A Ramírez-Solís
- Departamento de Física, Centro de Investigación en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| |
Collapse
|
9
|
Jones ZR, Livshits MY, White FD, Dalodière E, Ferrier MG, Lilley LM, Knope KE, Kozimor SA, Mocko V, Scott BL, Stein BW, Wacker JN, Woen DH. Advancing understanding of actinide(iii) (Ac, Am, Cm) aqueous complexation chemistry. Chem Sci 2021; 12:5638-5654. [PMID: 34168798 PMCID: PMC8179631 DOI: 10.1039/d1sc00233c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
The positive impact of having access to well-defined starting materials for applied actinide technologies - and for technologies based on other elements - cannot be overstated. Of numerous relevant 5f-element starting materials, those in complexing aqueous media find widespread use. Consider acetic acid/acetate buffered solutions as an example. These solutions provide entry into diverse technologies, from small-scale production of actinide metal to preparing radiolabeled chelates for medical applications. However, like so many aqueous solutions that contain actinides and complexing agents, 5f-element speciation in acetic acid/acetate cocktails is poorly defined. Herein, we address this problem and characterize Ac3+ and Cm3+ speciation as a function of increasing acetic acid/acetate concentrations (0.1 to 15 M, pH = 5.5). Results obtained via X-ray absorption and optical spectroscopy show the aquo ion dominated in dilute acetic acid/acetate solutions (0.1 M). Increasing acetic acid/acetate concentrations to 15 M increased complexation and revealed divergent reactivity between early and late actinides. A neutral Ac(H2O)6 (1)(O2CMe)3 (1) compound was the major species in solution for the large Ac3+. In contrast, smaller Cm3+ preferred forming an anion. There were approximately four bound O2CMe1- ligands and one to two inner sphere H2O ligands. The conclusion that increasing acetic acid/acetate concentrations increased acetate complexation was corroborated by characterizing (NH4)2M(O2CMe)5 (M = Eu3+, Am3+ and Cm3+) using single crystal X-ray diffraction and optical spectroscopy (absorption, emission, excitation, and excited state lifetime measurements).
Collapse
Affiliation(s)
- Zachary R Jones
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Maksim Y Livshits
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Frankie D White
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Elodie Dalodière
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Maryline G Ferrier
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Laura M Lilley
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Karah E Knope
- Department of Chemistry, Georgetown University 37th and O Streets NW Washington D.C. 20057 USA
| | - Stosh A Kozimor
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Veronika Mocko
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Brian L Scott
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Jennifer N Wacker
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
- Department of Chemistry, Georgetown University 37th and O Streets NW Washington D.C. 20057 USA
| | - David H Woen
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| |
Collapse
|
10
|
Gao Y, Grover P, Schreckenbach G. Stabilization of hydrated Ac III cation: the role of superatom states in actinium-water bonding. Chem Sci 2021; 12:2655-2666. [PMID: 34164034 PMCID: PMC8179294 DOI: 10.1039/d0sc02342f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/03/2021] [Indexed: 12/02/2022] Open
Abstract
225Ac-based radiopharmaceuticals have the potential to become invaluable in designated cancer therapy. However, the limited understanding of the solution chemistry and bonding properties of actinium has hindered the development of existing and emerging targeted radiotherapeutics, which also poses a significant challenge in the discovery of new agents. Herein, we report the geometric and electronic structural properties of hydrated AcIII cations in the [AcIII(H2O) n ]3+ (n = 4-11) complexes in aqueous solution and gas-phase using density functional theory. We found that nine water molecules coordinated to the AcIII cation is the most stable complex due to an enhanced hydration Gibbs free energy. This complex adopts a closed-shell 18-electron configuration (1S 21P 61D 10) of a superatom state, which indicates a non-negligible covalent character and involves H2O → AcIII σ donation interaction between s-/p-/d-type atomic orbitals of the Ac atom and 2p atomic orbitals of the O atoms. Furthermore, potentially existing 10-coordinated complexes need to overcome an energy barrier (>0.10 eV) caused by hydrogen bonding to convert to 9-coordination. These results imply the importance of superatom states in actinide chemistry generally, and specifically in AcIII solution chemistry, and highlight the conversion mechanism between different coordination numbers.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Payal Grover
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| |
Collapse
|
11
|
Zhu F, Miao JT, Zhou Y, Liu H, Fang Y, Fang C. A Study of the Structure of Aqueous Rubidium Tetraborate Solutions. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-020-00969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Morgenstern A, Lilley LM, Stein BW, Kozimor SA, Batista ER, Yang P. Computer-Assisted Design of Macrocyclic Chelators for Actinium-225 Radiotherapeutics. Inorg Chem 2020; 60:623-632. [PMID: 33213142 DOI: 10.1021/acs.inorgchem.0c02432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Actinium-225 (225Ac) is an excellent candidate for targeted radiotherapeutic applications for treating cancer, because of its 10-day half-life and emission of four high-energy α2+ particles. To harness and direct the energetic potential of actinium, strongly binding chelators that remain stable in vivo during biological targeting must be developed. Unfortunately, controlling chelation for actinium remains challenging. Actinium is the largest +3 cation on the periodic table and has a 6d05f0 electronic configuration, and its chemistry is relatively unexplored. Herein, we present theoretical work focused on improving the understanding of actinium bonding with macrocyclic chelating agents as a function of (1) macrocycle ring size, (2) the number and identity of metal binding functional groups, and (3) the length of the tether linking the metal binding functional group to the macrocyclic backbone. Actinium binding by these chelators is presented within the context of complexation with DOTA4-, the most relevant Ac3+ binding agent for contemporary radiopharmaceutical applications. The results enabled us to develop a new strategy for actinium chelator design. The approach is rooted in our identification that Ac3+-chelation chemistry is dominated by ionic bonding interactions and relies on (1) maximizing electrostatic interactions between the metal binding functional group and the Ac3+ cation and (2) minimizing electronic repulsion between negatively charged actinium binding functional groups. This insight will provide a foundation for future innovation in developing the next generation of multifunctional actinium chelators.
Collapse
Affiliation(s)
- Amanda Morgenstern
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Laura M Lilley
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin W Stein
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
13
|
Busato M, D'Angelo P, Lapi A, Tolazzi M, Melchior A. Solvation of Co2+ ion in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid: A molecular dynamics and X-ray absorption study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Racow EE, Kreinbihl JJ, Cosby AG, Yang Y, Pandey A, Boros E, Johnson CJ. General Approach to Direct Measurement of the Hydration State of Coordination Complexes in the Gas Phase: Variable Temperature Mass Spectrometry. J Am Chem Soc 2019; 141:14650-14660. [DOI: 10.1021/jacs.9b05874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Emily E. Racow
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - John J. Kreinbihl
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Alexia G. Cosby
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Yi Yang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Apurva Pandey
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Christopher J. Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| |
Collapse
|