1
|
Shao T, Gong JM, Liu J, Han LJ, Chen M, Jia Q, Fu DW, Lu HF. 2D lead-free organic–inorganic hybrid exhibiting dielectric and structural phase transition at higher temperatures. CrystEngComm 2022. [DOI: 10.1039/d2ce00541g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel switchable molecular dielectric material [3-3-difluorocyclobutylammonium]2CdCl4 was synthesized. It shows a reversible phase transition at 353.95 K and rapid switching and reversibility between high and low dielectric states for several cycles.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jun Miao Gong
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jia Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Li Jun Han
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ming Chen
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Qiangqiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
2
|
Rao W, Li M, You X, Wei Z, Zhang M, Wang L, Cai H. The Role of Fluorine-Substituted Positions on the Phase Transition in Organic-Inorganic Hybrid Perovskite Compounds. Inorg Chem 2021; 60:14706-14712. [PMID: 34546753 DOI: 10.1021/acs.inorgchem.1c01816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although research on organic-inorganic hybrid perovskites (OIHPs) has grown exponentially in the past two decades, the high phase transition temperature of OIHP materials is still one of the insurmountable difficulties. Herein, a series of A2BX4 type OIHP materials [(2,n-DFBA)2PbCl4] (n = 3, for 1; n = 4, for 2; n = 5, for 3; n = 6, for 4) have been prepared by reactions of double-substituted difluorobenzylamine (difluorobenzylamine = DFBA) with lead chloride in concentrated HCl aqueous solution. It was found the OIHP compounds 1-3 proceed a switchable phase transition with phase transition temperatures (Tc) at 449 K (1), 462 K (2) and 500 K (3), higher than that of the parent compound [(BA)2PbCl4] (BA = benzylammonium) at 438 K, but compound 4 exhibits no phase transition. A crystal structure analysis elucidated that the organic template ligands DFBA lead in the inorganic part in compounds 1-3 to a two-dimensional (2D) perovskite structure, while that in compound 4 leads to a one-dimensional (1D) chain structure. The different double-substituted positions of fluorine atoms on benzylamine have important influences on the phase transition in compounds 1-4.
Collapse
Affiliation(s)
- Wenjun Rao
- College of Chemistry, Nanchang University, Nanchang city 330031, People's Republic of China
| | - Mingli Li
- College of Chemistry, Nanchang University, Nanchang city 330031, People's Republic of China
| | - Xiuli You
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Zhenhong Wei
- College of Chemistry, Nanchang University, Nanchang city 330031, People's Republic of China
| | - Mengxia Zhang
- College of Chemistry, Nanchang University, Nanchang city 330031, People's Republic of China
| | - Lingyu Wang
- College of Chemistry, Nanchang University, Nanchang city 330031, People's Republic of China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang city 330031, People's Republic of China
| |
Collapse
|
3
|
Huang X, Gan T, Lu Y, Xu Z, Wang Z, Liao W. Evident Dielectric Relaxation in an Organic‐Inorganic Halide Perovskite. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue‐Qin Huang
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Tian Gan
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Yan‐Zi Lu
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Zhe‐Kun Xu
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Zhong‐Xia Wang
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Wei‐Qiang Liao
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
4
|
Cheng H, Yang MJ, Xu YQ, Li MZ, Ai Y. Target Designing Phase Transition Materials through Halogen Substitution. Chemphyschem 2021; 22:752-756. [PMID: 33590646 DOI: 10.1002/cphc.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Indexed: 11/12/2022]
Abstract
Crystalline materials have received extensive attention due to their extraordinary physical and chemical properties. Among them, phase transition materials have attracted great attention in the fields of photovoltaic, switchable dielectric devices, and ferroelectric memories, etc. However, many of them suffer from low phase transition temperatures, which limits their practical application. In this work, we systematically designed crystalline materials, (TMXM)2 PtCl6 (X=F, Cl, Br, I) through halogen substitution on the cations, aiming to improving phase transition temperature. The resulting phase transition of (TMXM)2 PtCl6 (X=F, Cl, Br, I) get a significant enhancement, compared to the parent compound [(CH3 )4 N]2 PtCl6 ((TM)2 PtCl6 ). Such phase transition temperature enhancement can be attributed to the introduction of halogen atoms that increase the potential energy barrier of the cation rotation. In addition, (TMBM)2 PtCl6 and (TMIM)2 PtCl6 have a low symmetry and crystallize in the space group C2 /c and P21 21 21 , respectively. This work highlights the halogen substitution in designing crystal materials with high phase transition temperature.
Collapse
Affiliation(s)
- Hao Cheng
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Meng-Juan Yang
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Qiu Xu
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Meng-Zhen Li
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Yong Ai
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
5
|
Wang Q, Gong Z, Ye L, Ma J, Xu Q, Li J, Ye H. Temperature‐Induced Reversible Phase Transition with Switchable Dielectric Response in a A
2
BX
4
‐Type Hybrid Compound: [TEAMA]
2
[CdBr
4
] (TEAMA=(CH
3
CH
2
)
3
NCH
3
). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qin‐Wen Wang
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou 330000 Jiangxi China
| | - Zhi‐Xin Gong
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou 330000 Jiangxi China
| | - Le Ye
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou 330000 Jiangxi China
| | - Jia‐Jun Ma
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou 330000 Jiangxi China
| | - Qi Xu
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou 330000 Jiangxi China
| | - Jian‐Rong Li
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou 330000 Jiangxi China
| | - Heng‐Yun Ye
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou 330000 Jiangxi China
| |
Collapse
|
6
|
Li YX, Wang XL, Li Y, Sato O, Yao ZS, Tao J. Stepwise Dielectric Switching Occurs in Two Photo-Responsive Complexes Possessing Two-Dimensional Structures. Inorg Chem 2021; 60:380-386. [PMID: 33320643 DOI: 10.1021/acs.inorgchem.0c03031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two organic-inorganic hybrid complexes, (CH3NH3)Na[Fe(CN)5NO]·H2O (1) and (CH3NH3)2[Fe(CN)5NO] (2), which exhibit stepwise dielectric switching as well as photo-induced structural transformation, are synthesized and examined. In these two compounds, the photo-responsive complex anions, [Fe(CN)5NO]2-, connected by Na+ through N-Na coordination bonds or CH3NH3+ through N···H-N hydrogen bonds, form two-dimensional structures. One organic cation, CH3NH3+, that resides in the intralaminar cavity and plays a role as a template, undergoes a temperature-controlled order-disorder structural phase transition. As the frozen-thawed state change of the polar organic cations modifies the polarizability of materials, stepwise dielectric switching is observed at the phase transition temperature. Furthermore, the photo-induced linkage isomerism of [Fe(CN)5NO]2- building block survives in the new compounds at the low-temperature range, which is verified by variable-temperature IR spectra after photo-irradiation. The coexistence of switchable dielectric properties and photo-induced structural variation suggests multiple optical-electric roles of the present materials.
Collapse
Affiliation(s)
- Yu-Xia Li
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Xiao-Lei Wang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Yue Li
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
7
|
Bhowal R, Balaraman AA, Ghosh M, Dutta S, Dey KK, Chopra D. Probing Atomistic Behavior To Unravel Dielectric Phenomena in Charge Transfer Cocrystals. J Am Chem Soc 2020; 143:1024-1037. [DOI: 10.1021/jacs.0c11459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rohit Bhowal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Anina Anju Balaraman
- Materials Science Division, Council of Scientific and Industrial Research, National Aerospace Laboratories, Kodihalli, Bengaluru 560017, Karnataka, India
| | - Manasi Ghosh
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Soma Dutta
- Materials Science Division, Council of Scientific and Industrial Research, National Aerospace Laboratories, Kodihalli, Bengaluru 560017, Karnataka, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
8
|
Su CY, Zhang ZX, Zhang WY, Shi PP, Fu DW, Ye Q. Unique Design Strategy for Dual Phase Transition That Successfully Validates Dual Switch Implementation in the Dielectric Material. Inorg Chem 2020; 59:4720-4728. [PMID: 32163278 DOI: 10.1021/acs.inorgchem.9b03787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dual phase transition/switch materials are a critical cornerstone of information storage and sensing. However, they are difficult to design successfully, and compared with materials showing single-switchable phase transitions, the dual ones retain many challenges by far. Therefore, the significance of a general strategy is far greater than an accidental success. Here, an efficient strategy combining branchlike Et3R and trunklike benzylamine analogues successfully validates dual-switch implementation in the dielectric materials. This inevitable success is based on our treelike analogue mentioned above in which amines with multiple branches can achieve a temperature-induced phase change. Exactly, (BCDA)2ZnBr4 [BCDA = benzyl-(2-chloroethyl)dimethylammonium] proves the regularity and undergoes two reversible phase transitions at 295.4 and 340.8 K, respectively. Variable-temperature single-crystal X-ray diffraction revealed that the generation of double phase transitions is caused by progressive changes of treelike BCDA+ as the temperature rises. Because the permittivity ε' of (BCDA)2ZnBr4 abruptly changed near the phase-transition temperatures, such physical properties make it have latent applicability. In short, the success of our strategy will inspire researches to discover more interesting dual phase transition/switch materials.
Collapse
Affiliation(s)
- Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.,Institute for Science and Applications of Molecular Ferroelectrics, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Zhi-Xu Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Wan-Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Ping-Ping Shi
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.,Institute for Science and Applications of Molecular Ferroelectrics, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qiong Ye
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
9
|
Wang GE, Sun C, Wang MS, Guo GC. Semiconducting crystalline inorganic-organic hybrid metal halide nanochains. NANOSCALE 2020; 12:4771-4789. [PMID: 32064483 DOI: 10.1039/c9nr10164k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One-dimensional (1D) inorganic-organic metal halide hybrids at the molecular level, which can be considered as arrays of nanochains isolated by organic components, have shown remarkable optical and electric properties. This review summarizes their reported structural types and shows how to modify their band gaps and optical and electric properties.
Collapse
Affiliation(s)
- Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Cai Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| |
Collapse
|
10
|
Li HH, Wang CF, Wu YX, Jiang F, Shi C, Ye HY, Zhang Y. Halogen substitution regulates the phase transition temperature and band gap of semiconductor compounds. Chem Commun (Camb) 2020; 56:1697-1700. [PMID: 31939947 DOI: 10.1039/c9cc09477f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
(CH3CH2NH3)3BiX6 and (CH2ClCH2NH3)3BiX6 (X = Cl, Br) obtained by halogen substitution not only realize the adjustment of the phase transition in a relatively wide temperature range, but also optimize the semiconductor performance. This will promote the exploration and construction of semiconductor materials with tunable temperatures and lower band gaps.
Collapse
Affiliation(s)
- Hui-Hui Li
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.
| | - Chang-Feng Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Ya-Xing Wu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.
| | - Fan Jiang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Yi Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China. and Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
11
|
Zhang ZX, Zhang T, Shi PP, Zhang WY, Ye Q, Fu DW. Anion-Regulated Molecular Rotor Crystal: The First Case of a Stator-Rotator Double Switch with Relaxation Behavior. J Phys Chem Lett 2019; 10:4237-4244. [PMID: 31295405 DOI: 10.1021/acs.jpclett.9b01503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular rotational motion is crucial in artificial molecular machines and is expected to be very significant for the development of an electronic information molecular machine as mentioned in the 2016 Nobel Prize. However, controlling multiple motor modes is a huge challenge. Here, we report a case in which the structural phase transition effectively triggers multiple motor modes by regulating the rotational speed of the cation and/or anion. A novel switchable crystalline supramolecular rotor, [(cyclohexylammonium)(18-crown-6)] FSO3 (1), exhibits prominent temperature-dependent double switching behavior at 157.9 and 389.1 K induced by the variation of the rotational speed of the FSO3- anion (which acts as a super miniature rotator) in response to temperature. Moreover, it exhibits significant relaxation behavior and excellent pyroelectric switch characteristics. To the best of our knowledge, this might be the first discovery of the stator-rotator double switch with a relaxation effect, which could be a promising candidate for a slow/fast responsive double switch over a wide temperature range.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , P. R. China
| | - Tie Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , P. R. China
| | - Ping-Ping Shi
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , P. R. China
| | - Wan-Ying Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , P. R. China
| | - Qiong Ye
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , P. R. China
| | - Da-Wei Fu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , P. R. China
| |
Collapse
|
12
|
Aguilar-Granda A, Colin-Molina A, Jellen MJ, Núñez-Pineda A, Cifuentes-Quintal ME, Toscano RA, Merino G, Rodríguez-Molina B. Triggering the dynamics of a carbazole- p-[phenylene-diethynyl]-xylene rotor through a mechanically induced phase transition. Chem Commun (Camb) 2019; 55:14054-14057. [DOI: 10.1039/c9cc05672f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A crystalline molecular machine with several solid phases where only one is able to show intramolecular rotation.
Collapse
Affiliation(s)
- Andrés Aguilar-Granda
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Ciudad de México
| | - Abraham Colin-Molina
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Ciudad de México
| | - Marcus J. Jellen
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Alejandra Núñez-Pineda
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Ciudad de México
| | | | - Rubén Alfredo Toscano
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Ciudad de México
| | - Gabriel Merino
- Departamento de Física Aplicada
- Centro de Investigación y de Estudios Avanzados
- Unidad Mérida
- Mérida, Yuc
- Mexico
| | - Braulio Rodríguez-Molina
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Ciudad de México
| |
Collapse
|