1
|
Wen Q, Yuan X, Zhou Q, Yang HJ, Jiang Q, Hu J, Guo CY. Solvent- and Co-Catalyst-Free Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by Recyclable Bifunctional Niobium Complexes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093531. [PMID: 37176413 PMCID: PMC10179855 DOI: 10.3390/ma16093531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
CO2, as a cheap and abundant renewable C1 resource, can be used to synthesize high value-added chemicals. In this paper, a series of bifunctional metallic niobium complexes were synthesized and their structures were characterized by IR, NMR and elemental analysis. All of these complexes have been proved to be efficient catalysts for the coupling reaction of CO2 and epoxides to obtain cyclic carbonates under solvent- and co-catalyst-free conditions. By using CO2 and propylene oxide as a model reaction, the optimal reaction conditions were systematically screened as: 100 °C, 1 MPa, 2 h, ratio of catalyst to alkylene oxide 1:100. Under the optimal reaction conditions, the bifunctional niobium catalysts can efficiently catalyze the coupling reaction with high yield and excellent selectivity (maximum yield of >99% at high pressure and 96.8% at atmospheric pressure). Moreover, this series of catalysts can also catalyze the coupling reaction at atmospheric pressure and most of them showed high conversion of epoxide. The catalysts have good substrate suitability and are also applicable to a variety of epoxides including diepoxides and good catalytic performances were achieved for producing the corresponding cyclic carbonates in most cases. Furthermore, the catalysts can be easily recovered by simple filtration and reused for at least five times without obvious loss of catalytic activity and selectivity. Kinetic studies were carried out preliminarily for the bifunctional niobium complexes with different halogen ions (3a(Cl-), 3b(Br-), 3c(I-)) and the formation activation energies (Ea) of cyclic carbonates were obtained. The order of apparent activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) > 3c (37.4 kJ/mol). Finally, a possible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Qin Wen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xuexin Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qiqi Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hai-Jian Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qingqing Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Juncheng Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
N-heterocyclic carbene-pyridine ligand coordinated Mo(II) complexes catalyzed synthesis of cyclic carbonates from carbon dioxide and epoxides. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Kang Y, Wang B, Nan R, Li Y, Zhu Z, Xiao XQ. Cyclic Carbonate Synthesis from Epoxides and CO 2 Catalyzed by Aluminum-Salen Complexes Bearing a nido-C 2B 9 Carborane Ligand. Inorg Chem 2022; 61:8806-8814. [PMID: 35653698 DOI: 10.1021/acs.inorgchem.2c00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The active and well-designed Schiff base ligands are considered "privileged ligands". The so-called salen ligands, i.e., the tetradentate [O, N, N, O] bis-Schiff base ligands, have also found broad applications in many homogeneous catalytic reactions. Modification of the salen ligands has concentrated on altering the substituents in the phenolate rings and variations in the diamine backbones. Herein, o-carborane-supported salen ligands (2) were designed and prepared. A series of aluminum-salen complexes (3·(sol)2), which were supported by the nido-C2B9 carborane anions, were synthesized. These Al(III) complexes showed high activities (TOF up to 1500 h-1) in catalyzing the cycloaddition of epoxides and CO2 at atmospheric pressure and near room temperature. Complexes 3·(sol)2 are one of the rare examples of Al-based catalysts capable of promoting cycloaddition at 1 bar pressure of CO2. Density functional theory (DFT) studies combined with the catalytic results reveal that the catalytic cycles occur on two axial sites of the Al(III) center.
Collapse
Affiliation(s)
- Yanrui Kang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Beining Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Runxia Nan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Yiwen Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
4
|
Cobalt(II) complex-catalyzed solventless coupling of CO2 and epoxides. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Fernández-Baeza J, Sánchez-Barba LF, Lara-Sánchez A, Sobrino S, Martínez-Ferrer J, Garcés A, Navarro M, Rodríguez AM. NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO 2 Fixation into a Variety of Cyclic Carbonates. Inorg Chem 2020; 59:12422-12430. [PMID: 32811145 DOI: 10.1021/acs.inorgchem.0c01532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new derivatives of the bis(3,5-dimethylpyrazol-1-yl)methane modified by introduction of organosilyl groups on the central carbon atom, one of which bearing a chiral fragment, have been easily prepared. We verified the potential utility of these compounds through the reaction with [Zr(NMe2)4] for the preparation of novel zirconium complexes in which an ancillary bis(pyrazol-1-yl)methanide acts as a robust monoanionic tridentate scorpionate in a κ3-NNC chelating mode, forming strained four-membered heterometallacycles. These κ3-NNC-scorpionate zirconium amides were investigated as catalysts in combination with tetra-n-butylammonium bromide as cocatalyst for CO2 fixation into five-membered cyclic carbonate products. The study has led to the development of an efficient zirconium-based bicomponent system for the selective cycloaddition reaction of CO2 with epoxides. Kinetics investigations confirmed apparent first-order dependence on the catalyst and cocatalyst concentrations. In addition, this system displays very broad substrate scope, including mono- and disubstituted substrates, as well as the challenging biorenewable terpene derived limonene oxide, under mild and solvent-free conditions.
Collapse
Affiliation(s)
- Juan Fernández-Baeza
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Sonia Sobrino
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Jaime Martínez-Ferrer
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Andrés Garcés
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Marta Navarro
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| |
Collapse
|
6
|
Tan J, Wang L, Hu YL. Multifunctional Periodic Mesoporous Organosilica Supported Benzotriazolium Ionic Liquid as an Efficient Nanocatalyst for Synergistic Transformation of CO
2
to Cyclic Carbonates. ChemistrySelect 2020. [DOI: 10.1002/slct.202000813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jin Tan
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| |
Collapse
|
7
|
Ryu S. A Density Functional Study of Amine Catalysts for CO
2
Fixation into Cyclic Carbonates. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seol Ryu
- Department of ChemistryChosun University Gwangju 61452 Republic of Korea
| |
Collapse
|