1
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
2
|
Liu Z, Fu H, Dong H, Lai K, Yang Z, Fan C, Luo Y, Qin W, Guo L. Triphenylphosphine-Modified Iridium III, Rhodium III, and Ruthenium II Complexes to Achieve Enhanced Anticancer Selectivity by Targeting Mitochondria. Inorg Chem 2024. [PMID: 39681494 DOI: 10.1021/acs.inorgchem.4c03975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The incorporation of an organelle-targeting moiety into compounds has proven to be an effective strategy in the development of targeted anticancer drugs. We herein report the synthesis, characterization, and biological evaluation of novel triphenylphosphine-modified half-sandwich iridiumIII, rhodiumIII, and rutheniumII complexes. The primary goal was to enhance anticancer selectivity through mitochondrial targeting. All these triphenylphosphine-modified complexes exhibited promising cytotoxicity in the micromolar range (5.13-23.22) against A549 and HeLa cancer cell lines, surpassing the activity of comparative complexes that lack the triphenylphosphine moiety. Noteworthy is their good selectivity toward cancer cells compared to normal BEAS-2B cells, underscored by selectivity index ranging from 7.3 to >19.5. Mechanistically, these complexes primarily target mitochondria rather than interacting with DNA. The targeting of mitochondria and triggering mitochondrial dysfunction were confirmed using both confocal microscopy and flow cytometry. Their ability to depolarize mitochondrial membrane potential (MMP) and enhance reactive oxygen species (ROS) was observed, thereby leading to intrinsic apoptotic pathways. Moreover, these complexes lead to cell cycle arrest in the G2/M phase and demonstrated antimigration effects, significantly inhibiting the migration of A549 cells in wound-healing assays.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuting Luo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenting Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
3
|
Guo L, Li P, Jing Z, Gong Y, Lai K, Fu H, Dong H, Yang Z, Liu Z. Iminoamido chelated iridium(III) and ruthenium(II) anticancer complexes with mitochondria-targeting ability and potential to overcome cisplatin resistance. J Inorg Biochem 2024; 258:112631. [PMID: 38843774 DOI: 10.1016/j.jinorgbio.2024.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/01/2024]
Abstract
A diverse set of neutral half-sandwich iminoamido iridium and ruthenium organometallic complexes is synthesized through the utilization of Schiff base pro-ligands with N˄N donors. Notably, these metal complexes with varying leaving groups (Cl- or OAc-) are formed by employing different quantities of the deprotonating agent NaOAc, and exhibit promising cytotoxicity against various cancer cell lines such as A549 and cisplatin-resistant A549/DDP lung cancer cells, as well as HeLa cells, with IC50 values spanning from 9.26 to 15.98 μM. Cytotoxicity and anticancer selectivity (SI: 1.9-2.4) of these metal complexes remain unaffected by variations in the metal center, leaving group, and ligand substitution. Further investigations reveal that these metal complexes specifically target mitochondria, leading to the depolarization of the mitochondrial membrane and instigating the production of intracellular reactive oxygen species. Furthermore, the metal complexes are found to induce late apoptosis and disrupt the cell cycle, leading to G2/M cell cycle arrest specifically in A549 cancer cells. In light of these findings, it is evident that the primary mechanism contributing to the anticancer effectiveness of these metal complexes is the redox pathway.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhihong Jing
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
4
|
Guo L, Li P, Li J, Gong Y, Li X, Liu Y, Yu K, Liu Z. Half-Sandwich Iridium(III), Rhodium(III), and Ruthenium(II) Complexes Chelating Hybrid sp 2-N/sp 3-N Donor Ligands to Achieve Improved Anticancer Selectivity. Inorg Chem 2023; 62:15118-15137. [PMID: 37671819 DOI: 10.1021/acs.inorgchem.3c02118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The biological efficacy of half-sandwich platinum group organometallic complexes of the formula [(η5-Cpx)/(η6-arene)M(XY)Cl]0/+ (XY = bidentate ligands; Cpx = functionalized cyclopentadienyl; M = Ir, Rh, Ru, Os) has received considerable attention due to the significance of the metal center, chelating ligand, and Cpx/arene moieties in defining their anticancer potency and selectivity. With a facile access to the BIAN-derived imine-amine ligands using alkylaluminum as the reductant, we herein described the preparation and characterization of 16 half-sandwich Ir(III), Rh(III), and Ru(II) complexes chelating the hybrid sp2-N/sp3-N donor ligand. A nonplanar five-member metallacycle was confirmed by X-ray single-crystal structures of Ir1-Ir3, Ir7, Rh1, Ru1, and Ru4. The attempt to prepare imine-amido complexes using a base as the deprotonating agent led to the mixture of imine-amine complexes, within which the leaving group Cl- was displaced, and 16-electron imine-amido complexes without Cl-. The half-sandwich imine-amine complexes in this system underwent rapid hydrolysis in aqueous solution, exhibited weak photoluminescence, and showed the ability of binding to CT-DNA and BSA. The cytotoxicity of all imine-amine complexes against A549 lung cancer cell lines, HeLa cervical cancer cell lines, and 4T1 mouse breast cancer cells was determined by an MTT assay. The IC50 values of these complexes were in a range of 5.71-67.28 μM. Notably, most of these complexes displayed improved selectivity toward A549 cancer cells versus noncancerous BEAS-2B cells in comparison with the corresponding α-diimine complexes chelating the sp2-N/sp2-N donor ligand, which have been shown no selectivity in our previous report. The anticancer selectivity of these complexes appeared to be related to the redox-based mechanism including the catalytic oxidation of NADH to NAD+, reactive oxygen species (ROS) generation, and depolarization of the mitochondrial membrane. Further, inducing apoptosis of these complexes in A549 cancer cells and BEAS-2B normal cells also correlated with their anticancer selectivity, indicating the apoptosis mode of cell death in this system. In addition, these complexes could enter A549 cells via energy-dependent pathway and were able to impede the in vitro migration of A549 cells.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoyuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kaijian Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
5
|
Hu X, Guo L, Liu M, Zhang Q, Gong Y, Sun M, Feng S, Xu Y, Liu Y, Liu Z. Increasing Anticancer Activity with Phosphine Ligation in Zwitterionic Half-Sandwich Iridium(III), Rhodium(III), and Ruthenium(II) Complexes. Inorg Chem 2022; 61:20008-20025. [PMID: 36426422 DOI: 10.1021/acs.inorgchem.2c03279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The synthesis and biological assessment of neutral or cationic platinum group metal-based anticancer complexes have been extremely studied, whereas there are few reports on the corresponding zwitterionic complexes. Herein, the synthesis, characterization, and bioactivity of zwitterionic half-sandwich phosphine-imine iridium(III), rhodium(III), and ruthenium(II) complexes were presented. The sulfonated phosphine-imine ligand and a group of zwitterionic half-sandwich P,N-chelating organometallic complexes were fully characterized by nuclear magnetic resonance (NMR), mass spectrum (electrospray ionization, ESI), elemental analysis, and X-ray crystallography. The solution stability of these complexes and their spectral properties were also determined. Notably, almost all of these complexes showed enhanced anticancer activity against model HeLa and A549 cancer cells than the corresponding zwitterionic pyridyl-imine N,N-chelating iridium(III) and ruthenium(II) complexes, which have exhibited inactive or low active in our previous work. The increase in the lipophilic property and intracellular uptake levels of these zwitterionic P,N-chelating complexes appeared to be associated with their superior cytotoxicity. In addition, these complexes showed biomolecular interactions with bovine serum albumin (BSA). The flow cytometry studies indicated that the representative complex Ir1 could induce early-stage apoptosis in A549 cells. Further, confocal microscopy imaging analysis displayed that Ir1 entered A549 cells through the energy-dependent pathway, targeted lysosome, and could cause lysosomal damage. In particular, these complexes could impede cell migration in A549 cells.
Collapse
Affiliation(s)
- Xueyan Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengqi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Qiuya Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengru Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Shenghan Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Youzhi Xu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
6
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Gao J, Guo L, Wu Y, Cheng Y, Hu X, Liu J, Liu Z. 16-Electron Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes as Lysosome-Targeted Anticancer Agents. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jie Gao
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuting Wu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yihan Cheng
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xueyan Hu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinfeng Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
8
|
Guo L, Hu X, Yang Y, An W, Gao J, Liu Q, Liu Z. Synthesis and biological evaluation of zwitterionic half-sandwich Rhodium(III) and Ruthenium(II) organometallic complexes. Bioorg Chem 2021; 116:105311. [PMID: 34474302 DOI: 10.1016/j.bioorg.2021.105311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Herein we present the synthesis and characterization of a panel of structurally related zwitterionic piano-stool rhodium(III) and ruthenium(II) complexes. The identities of these novel complexes have been determined by NMR spectroscopy, mass spectrometry, elemental analysis and single-crystal X-ray crystallography. The stability and fluorescence property of these zwitterionic complexes were also confirmed. Zwitterionic rhodium(III) complexes Rh1-Rh4 displayed potent cytotoxic activity against A549 and HeLa human cancer cells. On the contrary, zwitterionic ruthenium(II) complexes Ru1-Ru4 presented no obvious cytotoxic activity to the test cell lines. Moreover, the trend that the introduction of fluorinated substituent and phenyl ring in the η5-CpR ring and N,N-chelating ligand, respectively, could enhance the cytotoxicity of these zwitterionic rhodium(III) complexes, were observed. The exploration of mechanism using flow cytometry displayed that the cytotoxicity of these rhodium(III) complexes was associated with the perturbation of the cell cycle and the induction of cell apoptosis. Furthermore, microscopic analysis using confocal microscopy indicated that the representative rhodium(III) complex Rh4 entered A549 cells via energy-dependent pathway and predominantly accumulated in lysosomes, thus leading to the disruption of lysosomal integrity.
Collapse
Affiliation(s)
- Lihua Guo
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xueyan Hu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yanjing Yang
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenyu An
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jie Gao
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qin Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
9
|
Chatterjee R, Bhattacharya I, Roy S, Purkait K, Koley TS, Gupta A, Mukherjee A. Synthesis, Characterization, and Cytotoxicity of Morpholine-Containing Ruthenium(II) p-Cymene Complexes. Inorg Chem 2021; 60:12172-12185. [PMID: 34346215 DOI: 10.1021/acs.inorgchem.1c01363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morpholine motif is an important pharmacophore and, depending on the molecular design, may localize in cellular acidic vesicles. To understand the importance of the presence of pendant morpholine in a metal complex, six bidentate N,O-donor ligands with or without a pendant morpholine unit and their corresponding ruthenium(II) p-cymene complexes (1-6) are synthesized, purified, and structurally characterized by various analytical methods including X-ray diffraction. Complexes 2-4 crystallized in the P21/c space group, whereas 5 and 6 crystallized in the P1̅ space group. The solution stability studies using 1H NMR support instantaneous hydrolysis of the native complexes to form monoaquated species in a solution of 3:7 (v/v) dimethyl sulfoxide-d6 and 20 mM phosphate buffer (pH* 7.4, containing 4 mM NaCl). The monoaquated complexes are stable for at least up to 24 h. The complexes display excellent in vitro antiproliferative activity (IC50 ca. 1-14 μM) in various cancer cell lines, viz., MDA-MB-231, MiaPaCa2, and Hep-G2. The presence of the pendant morpholine does not improve the dose efficacy, but rather, with 2-[[(2,6-dimethylphenyl)imino]methyl]phenol (HL1) and its pendant morpholine analogue (HL3) giving complexes 1 and 3, respectively, the antiproliferative activity was poorer with 3. MDA-MB-231 cells treated with the complexes show that the acidic vesicles remain acidic, but the population of acidic vesicles increases or decreases with time of exposure, as observed from the dispersed red puncta, depending on the complex used. The presence of the 2,6-disubstituted aniline and the naphthyl group seems to improve the antiproliferative dose. The complex treated MDA-MB-231 cells show that cathepsin D, which is otherwise present in the cytosolic lysosomes, translocates to the nucleus as a result of exposure to the complexes. Irrespective of the presence of a morpholine motif, the complexes do not activate caspase-3 to induce apoptosis and seem to favor the necrotic pathway of cell killing.
Collapse
|
10
|
Hao J, Zhang H, Tian L, Yang L, Zhou Y, Zhang Y, Liu Y, Xing D. Evaluation of anticancer effects in vitro of new iridium(III) complexes targeting the mitochondria. J Inorg Biochem 2021; 221:111465. [PMID: 33989986 DOI: 10.1016/j.jinorgbio.2021.111465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Iridium(III) complexes have the potential to serve as novel therapeutic drugs for treating tumor. In this work, three new complexes [Ir(ppy)2(cdppz)](PF6) (1) (ppy = 2-phenylpyridine, cdppz = 11-chlorodipyrido[3,2-a,2',3'-c]phenazine), [Ir(bzq)2(cdppz)](PF6) (2) (bzq = benzo[h]quinolone) and [Ir(piq)2(cdppz)](PF6) (3) (piq = 1-phenylisoquinoline) were prepared as well as characterized. MTT (3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide) assay revealed that the complex 2 exerted potent cytotoxicity against to various cancer cells lines and particularly for SGC-7901 cells. Meanwhile, the complexes could suppress cell colonies formation and migration ability. Apoptosis assays of AO/EB staining as well as flow cytometry revealed that the synthesized complexes may cause apoptosis of SGC-7901 cells. Moreover, the decline of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS) levels and release of cytochrome c demonstrated the complexes could cause apoptosis mainly through the mitochondrial death pathway and arrest cell at G0/G1 phase. Additionally, the complexes have significant influence on the expression of proteins which is interrelated to cell apoptosis. In summary, our studies provided fundamental information regarding the further study of the possible anticancer mechanisms of iridium (III) complexes.
Collapse
Affiliation(s)
- Jing Hao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Linlin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510000, PR China.
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Degang Xing
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Advances in novel iridium (III) based complexes for anticancer applications: A review. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Chen J, Tao Q, Wu J, Wang M, Su Z, Qian Y, Yu T, Wang Y, Xue X, Liu HK. A lysosome-targeted ruthenium(II) polypyridyl complex as photodynamic anticancer agent. J Inorg Biochem 2020; 210:111132. [DOI: 10.1016/j.jinorgbio.2020.111132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022]
|
13
|
Chen L, Fan Y, Qiu J, Laurent R, Li J, Bignon J, Mignani S, Caminade AM, Shi X, Majoral JP. Potent Anticancer Efficacy of First-In-Class Cu II and Au III Metaled Phosphorus Dendrons with Distinct Cell Death Pathways. Chemistry 2020; 26:5903-5910. [PMID: 32142179 DOI: 10.1002/chem.202001014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 02/04/2023]
Abstract
First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Yu Fan
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Jieru Qiu
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Régis Laurent
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Jin Li
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles du CNRS, 91198 avenue de la Terrasse, Paris Gif-sur-Yvette Cedex, France
| | - Serge Mignani
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 86045, rue des Saints Pères, 75006, Paris, France.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of, Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France.,Université de Toulouse, INPT, 31077, Toulouse CEDEX 4, France
| |
Collapse
|
14
|
Kozieł S, Komarnicka UK, Ziółkowska A, Skórska-Stania A, Pucelik B, Płotek M, Sebastian V, Bieńko A, Stochel G, Kyzioł A. Anticancer potency of novel organometallic Ir(iii) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00538j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 3D model of cell culturing (spheroids) was explored and the anticancer potential of the selected novel organometallic Ir(iii) complex encapsulated in Pluronic p-123 micelles was clearly proved.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | | | | | - Barbara Pucelik
- Małopolska Centre of Biotechnology
- Jagiellonian University
- Kraków
- Poland
| | - Michał Płotek
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
- Faculty of Conservation and Restoration of Works of Art
| | - Victor Sebastian
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- The Aragón Materials Science Institute (ICMA)
- University of Zaragoza
- 50018 Zaragoza
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Grażyna Stochel
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| |
Collapse
|
15
|
Yang Y, Guo L, Ge X, Zhu T, Chen W, Zhou H, Zhao L, Liu Z. The Fluorine Effect in Zwitterionic Half-Sandwich Iridium(III) Anticancer Complexes. Inorg Chem 2019; 59:748-758. [DOI: 10.1021/acs.inorgchem.9b03006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yanjing Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Teng Zhu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Wenjing Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Huanxing Zhou
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Liping Zhao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
16
|
Discovery of a Ruthenium Complex for the Theranosis of Glioma through Targeting the Mitochondrial DNA with Bioinformatic Methods. Int J Mol Sci 2019; 20:ijms20184643. [PMID: 31546801 PMCID: PMC6770666 DOI: 10.3390/ijms20184643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Glioma is the most aggressive and lethal brain tumor in humans. Mutations of mitochondrial DNA (mtDNA) are commonly found in tumor cells and are closely associated with tumorigenesis and progress. However, glioma-specific inhibitors that reflect the unique feature of tumor cells are rare. Here we uncover RC-7, a ruthenium complex with strong red fluorescence, could bind with glioma mtDNA and then inhibited the growth of human glioma cells but not that of neuronal cells, liver, or endothelial cells. RC-7 significantly reduced energy production and increased the oxidative stress in the glioma cells. Administration of RC-7 into mice not only could be observed in the glioma mass of brain by fluorescence imaging, but also obviously prevented the growth of xenograft glioma and prolonged mouse survival days. The findings suggested the theranostic application of a novel type of complex through targeting the tumor mtDNA.
Collapse
|
17
|
Chen S, Liu X, Tian Z, Ge X, Hao H, Hao Y, Zhang Y, Xie Y, Tian L, Liu Z. Triphenylamine and carbazole-modified iridium
III
2-phenylpyridine complexes: Synthesis, anticaner application and targeted research. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shujiao Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Hailong Hao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Yingying Hao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Ying Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Yaoqi Xie
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| |
Collapse
|