1
|
Zhang P, Tian YC, Wang Z, Lee WZ, Ye S. Magneto-Structural Correlation of Five-Coordinate Trigonal Bipyramidal High Spin Cobalt(II) Complexes. Chemistry 2024; 30:e202400336. [PMID: 38438303 DOI: 10.1002/chem.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Here, we combined magnetometry, multi-frequency electronic paramagnetic resonance, and wave function based ab initio calculations to investigate magnetic properties of two high spin Co(II) complexes Co(BDPRP) (BDPRP=2,6-bis((2-(S)-di(4-R)phenylhydroxylmethyl-1-pyrrolidi-nyl)methyl)pyridine, R=H for 8; R=tBu for 9). Complexes 8 and 9 featuring effective D3h symmetry were found to possess D=24.0 and 32.0 cm-1, respectively, in their S=3/2 ground states of1 e ' ' d x z / y z 4 1 e ' d x y / x 2 - y 2 2 1 a 1 ' d z 2 1 ${{\left(1{{\rm e}}^{{\rm { {^\prime}}}{\rm { {^\prime}}}}\right({d}_{xz/yz}\left)\right)}^{4}{\left(1{{\rm e}}^{{\rm { {^\prime}}}}\right({d}_{{xy/{x}^{2}-y}^{2}}\left)\right)}^{2}{\left(1{{\rm a}}_{1}^{{\rm { {^\prime}}}}\right({d}_{{z}^{2}}\left)\right)}^{1}}$ . Ligand field analyses revealed that the low-lying d-d excited states make either positive or vanishing contributions to D. Hence, total positive D values were measured for 8 and 9, as well as related D3h high spin Co(II) complexes. In contrast, negative D values are usually observed for C3v congeners. In-depth analyses suggested that lowering symmetry from D3h to C3v induces orbital mixing between1 e d x z / y z ${1{\rm e}\left({d}_{xz/yz}\right)}$ and2 e d x y / x 2 - y 2 ${2{\rm e}\left({d}_{{xy/{x}^{2}-y}^{2}}\right)}$ and admixes excited state4 A 2 1 e → 2 e ${{}^{4}{{\rm A}}_{2}\left(1e\to 2e\right)}$ into the ground state. Both factors turn the total D value progressively negative with the increasing distance (δ) of the Co(II) center out of the equatorial plane. Therefore, δ determines the sign and magnitude of final D values of five-coordinate trigonal bipyramidal S=3/2 Co(II) complexes as measured for a series of such species with varying δ.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yao-Cheng Tian
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
2
|
Feng L, Yang Y, Wang YX, Zhao Y, Liu ZY, Cong J, Zhang YQ, Cheng P. Reversible single-crystal to single-crystal transformation between triangular single-molecule toroics. Dalton Trans 2023; 52:16596-16600. [PMID: 37955190 DOI: 10.1039/d3dt03191h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We report a method for synthesizing single-molecule magnets through a single-crystal to single-crystal transformation. This process yields two single-molecule magnets with similar triangular Dy3 cores but distinct solvents and space groups achieved via solvent exchange. Magnetic properties reveal that both Dy3 molecules exhibit similar toroidal moments but manifest diverse multiple magnetization dynamic behaviors owing to the spin-lattice coupling influence from different solvent molecules.
Collapse
Affiliation(s)
- Lixi Feng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Xia Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Yizhen Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhong-Yi Liu
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Junzhuang Cong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Du S, Su D, Ruan Z, Zhou Y, Deng W, Zhang W, Sun Y, Liu J, Tong M. Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angew Chem Int Ed Engl 2022; 61:e202204700. [DOI: 10.1002/anie.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shan‐Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Dan Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ying‐Qian Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei‐Xiong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Young Sun
- Center of Quantum Materials and Devices, and Department of Applied Physics Chongqing University Chongqing 401331 P. R. China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
4
|
Du SN, Su D, Ruan ZY, Zhou YQ, Deng W, Zhang WX, Sun Y, Liu JL, Tong ML. Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shan-Nan Du
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Dan Su
- Chinese Academy of Sciences Beijing National Laboratory for Condensed Matter Physics 100190 Beijing CHINA
| | - Ze-Yu Ruan
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Ying-Qian Zhou
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Wei Deng
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Wei-Xiong Zhang
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Young Sun
- Chongqing University Department of Applied Physics Chongqing CHINA
| | - Jun-Liang Liu
- Sun Yat-Sen University School of Chemistry A856, School of Chemistry, Guangzhou East Campus of Sun Yat-sen University 510006 Guangzhou CHINA
| | - Ming-Liang Tong
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| |
Collapse
|
5
|
Wilson BH, Ward JS, Young DC, Liu J, Mathonière C, Clérac R, Kruger PE. Self‐Assembly Synthesis of a [2]Catenane Co
II
Single‐Molecule Magnet. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin H. Wilson
- MacDiarmid Institute for Advanced Materials and Nanotechnology School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8041 New Zealand
- Current address Bernal Institute University of Limerick Limerick V94 T9PX Ireland
| | - Jas S. Ward
- MacDiarmid Institute for Advanced Materials and Nanotechnology School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8041 New Zealand
| | - David C. Young
- MacDiarmid Institute for Advanced Materials and Nanotechnology School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8041 New Zealand
| | - Jun‐Liang Liu
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031 33600 Pessac France
| | - Corine Mathonière
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031 33600 Pessac France
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031 33600 Pessac France
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8041 New Zealand
| |
Collapse
|
6
|
Xi J, Cen P, Guo Y, Li Y, Qin Y, Zhang YQ, Song W, Liu X. Reversible on-off switching of Dy(III) single-molecule magnets via single-crystal-to-single-crystal transformation. Dalton Trans 2022; 51:6707-6717. [DOI: 10.1039/d2dt00501h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the interest in single-molecule magnets (SMMs) lies in their potential applications in information storage and quantum computing, the switching of their slow magnetic relaxation associated with dynamic crystal-to-crystal transformation...
Collapse
|
7
|
Wilson BH, Ward JS, Young DC, Liu JL, Mathonière C, Clérac R, Kruger PE. Self-Assembly Synthesis of a [2]Catenane Co II Single-Molecule Magnet. Angew Chem Int Ed Engl 2021; 61:e202113837. [PMID: 34780082 DOI: 10.1002/anie.202113837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/10/2022]
Abstract
We describe herein the self-assembly synthesis of an octanuclear CoII [2]catenane {[Co4 (H2 L)6 ]2 16+ } formed by the mechanical interlocking of two {[Co4 (H2 L)6 ]8+ } rectangles of unprecedented topology. Subtle manipulation of the synthetic conditions allows the isolation of a mixed-valence [Co2 III /Co2 II ]10+ non-catenated rectangle. The CoII centers in the [2]catenane exhibit slow relaxation of their magnetic moment, i. e. single-molecule magnet properties, dominated by quantum tunneling and Raman relaxation processes. This work shows that metallo-supramolecular chemistry can precisely control the organization of single-molecule magnets in topologically complex arrangements.
Collapse
Affiliation(s)
- Benjamin H Wilson
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.,Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jas S Ward
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - David C Young
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - Jun-Liang Liu
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France
| | - Corine Mathonière
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| |
Collapse
|
8
|
Khurana R, Gupta S, Ali ME. First-Principles Investigations of Magnetic Anisotropy and Spin-Crossover Behavior of Fe(III)-TBP Complexes. J Phys Chem A 2021; 125:2197-2207. [PMID: 33617261 DOI: 10.1021/acs.jpca.1c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the ongoing effort to obtain mononuclear 3d-transition-metal complexes that manifest slow relaxation of magnetization and, hence, can behave as single-molecule magnets (SMMs), we have modeled 14 Fe(III) complexes based on an experimentally synthesized (PMe3)2FeCl3 complex [J. Am. Chem. Soc. 2017, 139 (46), 16474-16477], by varying the axial ligands with group XV elements (N, P, and As) and equatorial halide ligands from F, Cl, Br, and I. Out of these, nine complexes possess large zero field splitting (ZFS) parameter D in the range of -40 to -60 cm-1. The first-principles investigation of the ground-spin state applying density functional theory (DFT) and wave function-based multiconfigurations methods, e.g., SA-CASSCF/NEVPT2, are found to be quite consistent except for few delicate cases with near-degenerate spin states. In such cases, the hybrid B3LYP functional is found to be biased toward high-spin (HS) state. Altering the percentage of exact exchange admixed in the B3LYP functional leads to intermediate-spin (IS) ground state consistent with the multireference calculations. The origin of large zero field splitting (ZFS) in the Fe(III)-based trigonal bipyramidal (TBP) complexes is investigated. Furthermore, a number of complexes are identified with very small ΔGHS-ISadia. values indicating the possible spin-crossover phenomenon between the bistable spin states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Sameer Gupta
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
9
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
10
|
Affiliation(s)
- Beiling Liao
- School of Chemistry and Biological Engineering, Hechi University, Hechi 546300, People’s Republic of China
| | - Shixiong Li
- School of Chemistry and Biological Engineering, Hechi University, Hechi 546300, People’s Republic of China
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou 543002, People’s Republic of China
| | - Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People’s Republic of China
| |
Collapse
|
11
|
Tang Q, Cheng Z, Lin Q, Wu J, Zhang Y, Zhang H, Zou H, Liang F. Synthesis, structure and magnetic properties of cyclic 3d metal clusters based on N–N single bonds of diacylhydrazine ligand. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Shi T, Xu Y, Li MX, Liu CM, Nfor EN, Wang ZX. A 10-coordinate cerium(III) complex with a ferrocene-based terpyridine ligand exhibiting field-induced slow magnetic relaxation. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wang WZ, Lei Z, Jia XG, Li LL, Fan W. A new coordination complex based on 2,2′-dipyridinium ligand as catalyst for the conversion of CO2 to propylene carbonate. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Wu Y, Xi J, Yang J, Song W, Luo S, Wang Z, Liu X. Coligand effects on the architectures and magnetic properties of octahedral cobalt( ii) complexes with easy-axis magnetic anisotropy. CrystEngComm 2020. [DOI: 10.1039/c9ce01871a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coligand effects lead to two mononuclear octahedral Co(ii) complexes exhibiting easy-axis magnetic anisotropies and distinct magnetic properties.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Shuchang Luo
- School of Chemical Engineering
- Guizhou University of Engineering Science
- Bijie
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
15
|
Gavrikov AV, Ilyukhin AB, Koroteev PS. Step-by-step: uncommon SCSC transformation accompanied by stepwise change in the binding of a particular ligand within a mononuclear complex upon stepwise desolvation. CrystEngComm 2020. [DOI: 10.1039/d0ce00379d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Uncommon SCSC transformation when desolvation induces subtle changes within a mononuclear complex, namely a stepwise change in the binding of a particular ligand.
Collapse
Affiliation(s)
- Andrey V. Gavrikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Andrey B. Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Pavel S. Koroteev
- N.S. Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| |
Collapse
|