1
|
Liu S, Jiang X, Qi L, Hu Y, Duanmu K, Wu C, Lin Z, Huang Z, Humphrey MG, Zhang C. An Unprecedented [BO 2]-Based Deep-Ultraviolet Transparent Nonlinear Optical Crystal by Superhalogen Substitution. Angew Chem Int Ed Engl 2024; 63:e202403328. [PMID: 38662352 DOI: 10.1002/anie.202403328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Solid-state structures with the superhalogen [BO2]- have thus far only been observed with a few compounds whose syntheses require high reaction temperatures and complicated procedures, while their optical properties remain almost completely unexplored. Herein, we report a facile, energy-efficient synthesis of the first [BO2]-based deep-ultraviolet (deep-UV) transparent oxide K9[B4O5(OH)4]3(CO3)(BO2) ⋅ 7H2O (KBCOB). Detailed structural characterization and analysis confirm that KBCOB possesses a rare four-in-one three-dimensional quasi-honeycomb framework, with three π-conjugated anions ([BO2]-, [BO3]3-, and [CO3]2-) and one non-π-conjugated anion ([BO4]5-) in the one crystal. The evolution from the traditional halogenated nonlinear optical (NLO) analogues to KBCOB by superhalogen [BO2]- substitution confers deep-UV transparency (<190 nm), a large second-harmonic generation response (1.0×KH2PO4 @ 1064 nm), and a 15-fold increase in birefringence. This study affords a new route to the facile synthesis of functional [BO2]-based oxides, paving the way for the development of next-generation high-performing deep-UV NLO materials.
Collapse
Affiliation(s)
- Shuai Liu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lu Qi
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Kaining Duanmu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
2
|
Ding M, Wu Q, Shen Y, Hong J, Dong G, Ma L. (C 8H 7N 2O 2) 2[Bi 2Br 8]·2H 2O and (C 8H 7N 2O 2) 6[Bi 2Cl 10]Cl 2·2H 2O: Exploring Birefringent Crystals in Hybrid Halide Systems. Inorg Chem 2024; 63:9701-9705. [PMID: 38728855 DOI: 10.1021/acs.inorgchem.3c04476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, new hybrid birefringent crystals of (C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O were successfully synthesized by introducing a new birefringent group [C8H7N2O2]+ by a simple aqueous solution evaporation method. They crystallize in the P21/n space group, and their structure consists mainly of the π-conjugated group [C8H7N2O2]+ and the octahedron centered on Bi3+. By first-principles calculations, the birefringence response comes from the [C8H7N2O2]+ group with a planar π-conjugated structure. Meanwhile, the synthesis, structure, first-principles calculations, and optical properties are reported in this paper.
Collapse
Affiliation(s)
- Mingliang Ding
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yaoguo Shen
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jinquan Hong
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Guofa Dong
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Liang Ma
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
3
|
Chen WF, Zou MJ, Li JJ, Zhang YN, Lan YZ, Cheng JW, Yang GY. M 6[Cd 2(CO 3) 2(B 12O 18)(OH) 6] (M = K, Rb): Borate-Carbonates with Two CdCO 3 Embedded in a Cyclic Oxoboron Anion. Inorg Chem 2024; 63:9026-9030. [PMID: 38723292 DOI: 10.1021/acs.inorgchem.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Two metal borate-carbonates, M6[Cd2(CO3)2(B12O18)(OH)6] [M = K (1), Rb (2)], were obtained under surfactant-thermal conditions. In 1 and 2, each cyclic [(B12O18)(OH)6]6- anion captures two CdCO3 in two sides of the rings and finally forms the unusual (CdCO3)2@[(B12O18)(OH)6] cluster. Both 1 and 2 show moderate birefringence. Density functional theory calculations indicate that carbonate groups have a major contribution to electron-related optical transition.
Collapse
Affiliation(s)
- Wei-Feng Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Mei-Jun Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jing-Jing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yi-Nan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - You-Zhao Lan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jian-Wen Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Xu G, Li H, Han J, Hou X, Yang Z, Pan S. Cd 8(BO 3) 4SiO 4: Metal Cation Inducing the Formation of Isolated [BO 3] and [SiO 4] Units in Borate Silicate. Inorg Chem 2024; 63:852-859. [PMID: 38112263 DOI: 10.1021/acs.inorgchem.3c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The first compound of cadmium-borate silicate Cd8(BO3)4SiO4, crystallizing in space group P42/n (no. 86), has been successfully synthesized by the conventional high-temperature solution method and melts congruently. The zero-dimensional anionic groups of Cd8(BO3)4SiO4 are isolated [BO3] triangles and isolated [SiO4] tetrahedra which are filled in the framework formed by [CdO6] polyhedra. It has a moderate birefringence (Δn = 0.053 at 546 nm), which is measured by experiment and evaluated by first-principles calculations; meanwhile, the source of birefringence is revealed through the response electronic distribution anisotropy method. The UV-vis-NIR diffuse reflectance spectrum indicates that Cd8(BO3)4SiO4 possesses a wide optical transparency range, with a UV cutoff edge at about 254 nm. This work enriches the structure chemistry of borate silicates, and we discussed the possible methods for the exploration and synthesis of novel optical crystals possessing zero-dimensional anionic groups in the borate silicate system.
Collapse
Affiliation(s)
- Guangsheng Xu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Li
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | - Jian Han
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhu A, Chen J, Zhang Y, Su Z. Cs2B4O5(OH)4: A new hydrated borate with a short UV cutoff edge. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Chen J, Yang Z, Wu K, Yang Y, Pan S. Sr5(CO3)2(BO3)2: A new family member of isostructural mixed borate and carbonate Ba4M(BO3)2(CO3)2 (M = Ba, Sr) with isolated BO3 and CO3 groups. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Qiu QM, Yang GY. Three mixed-alkaline-metal borates with {Li@B12Ox(OH)24−x} (x = 18, 22) clusters: from isolated oxoboron cluster to unusual layer. CrystEngComm 2021. [DOI: 10.1039/d1ce00910a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isolated {Li@B12O18(OH)6} clusters are extended to the {Li@B12O22(OH)2} layer through condensation reactions for the first time.
Collapse
Affiliation(s)
- Qi-Ming Qiu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Qiu QM, Sun KN, Yang GY. Five new rubidium borates with 0D clusters, 1D chains, 2D layers and 3D frameworks. CrystEngComm 2021. [DOI: 10.1039/d1ce00944c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By tuning the synthetic conditions, borates with 0D clusters were transformed into a 1D chain, 2D layer and 3D framework.
Collapse
Affiliation(s)
- Qi-Ming Qiu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ke-Ning Sun
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Zhuravlev YN, Atuchin VV. Comprehensive Density Functional Theory Studies of Vibrational Spectra of Carbonates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2275. [PMID: 33212956 PMCID: PMC7698329 DOI: 10.3390/nano10112275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 01/27/2023]
Abstract
Within the framework of the density functional theory (DFT) and the hybrid functional B3LYP by means of the CRYSTAL17 program code, the wavenumbers and intensities of normal oscillations of MgCO3, CaCO3, ZnCO3, CdCO3 in the structure of calcite; CaMg(CO3)2, CdMg(CO3)2, CaMn(CO3)2, CaZn(CO3)2 in the structure of dolomite; BaMg(CO3)2 in the structure of the norsethite type; and CaCO3, SrCO3, BaCO3, and PbCO3 in the structure of aragonite were calculated. Infrared absorption and Raman spectra were compared with the known experimental data of synthetic and natural crystals. For lattice and intramolecular modes, linear dependences on the radius and mass of the metal cation are established. The obtained dependences have predictive power and can be used to study solid carbonate solutions. For trigonal and orthorhombic carbonates, the linear dependence of wavenumbers on the cation radius RM (or M-O distance) is established for the infrared in-plane bending mode: 786.2-65.88·RM and Raman in-plane stretching mode: 768.5-53.24·RM, with a correlation coefficient of 0.87.
Collapse
Affiliation(s)
- Yurii N. Zhuravlev
- Institute of Basic Sciences, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Victor V. Atuchin
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Jin R, Cai W, Ding C, Mei F, Deng G, Shimizu R, Zhou Q. Spectrally uncorrelated biphotons generated from “the family of BBO crystal”. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/que2.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui‐Bo Jin
- Hubei Key Laboratory of Optical Information and Pattern RecognitionWuhan Institute of Technology Wuhan China
- State Key Laboratory of Quantum Optics and Quantum Optics DevicesInstitute of Laser Spectroscopy, Shanxi University Taiyuan China
| | - Wu‐Hao Cai
- Hubei Key Laboratory of Optical Information and Pattern RecognitionWuhan Institute of Technology Wuhan China
| | - Chunling Ding
- Hubei Key Laboratory of Optical Information and Pattern RecognitionWuhan Institute of Technology Wuhan China
| | - Feng Mei
- State Key Laboratory of Quantum Optics and Quantum Optics DevicesInstitute of Laser Spectroscopy, Shanxi University Taiyuan China
- Collaborative Innovation Center of Extreme OpticsShanxi University Taiyuan China
| | - Guang‐Wei Deng
- Institute of Fundamental and Frontier Sciences and School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China Chengdu China
- CAS Key Laboratory of Quantum InformationUniversity of Science and Technology of China Hefei China
| | | | - Qiang Zhou
- Institute of Fundamental and Frontier Sciences and School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China Chengdu China
- CAS Key Laboratory of Quantum InformationUniversity of Science and Technology of China Hefei China
| |
Collapse
|
11
|
Ding F, Zhang W, Nisbet ML, Zhang W, Halasyamani PS, Yang Z, Pan S, Poeppelmeier KR. NaRb3B6O9(OH)3(HCO3): A Borate-Bicarbonate Nonlinear Optical Material. Inorg Chem 2019; 59:759-766. [DOI: 10.1021/acs.inorgchem.9b03026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fenghua Ding
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weilong Zhang
- College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, People’s Republic of China
| | - Matthew L. Nisbet
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiguo Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - P. Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Zhihua Yang
- Key Laboratory of Functional Materials and Devices for Special Environments and Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shilie Pan
- Key Laboratory of Functional Materials and Devices for Special Environments and Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | | |
Collapse
|
12
|
Zhang W, Wei Z, Yang Z, Pan S. Cation Modulation on the Crystal Structure and Band Gap of Fluorooxoborates A3B3O3F6 (A = Alkali and Mixed Alkali Metal). Inorg Chem 2019; 58:13411-13417. [DOI: 10.1021/acs.inorgchem.9b02307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wenyao Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonglei Wei
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|