1
|
Lv H, Wu D, Cui X, Wu X, Yang J. Enhancing Magnetic Ordering in Two-Dimensional Metal-Organic Frameworks via Frontier Molecular Orbital Engineering. J Phys Chem Lett 2024; 15:9960-9967. [PMID: 39359144 DOI: 10.1021/acs.jpclett.4c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) have promise for use in lightweight permanent magnets in contrast to inorganic solid- or molecule-based magnets, but the realization of 2D MOF magnets with a high ordering temperature is limited by the typically weak spin exchange interactions. Here, we have proposed a frontier molecular orbital engineering strategy for modulating magnetism in 2D MOFs. It shows that the magnetic ground state can be mediated by two intra-atomic spin exchange pathways in organic ligands, akin to the Bloch and Heisenberg models, depending on the shape of the frontier orbitals of the organic ligands. By engineering the shape of the lowest unoccupied molecular orbital (LUMO) via chemical hydrogenation, we achieved a nearly 11-fold increase in the ordering temperature. In particular, a quantitative analysis shows that the ordering temperature increases linearly with the orbital delocalization index of the ligands' LUMO. This work suggests a general frontier orbital engineering approach for modulating the spin exchange interaction in 2D MOF magnets.
Collapse
Affiliation(s)
- Haifeng Lv
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xuefeng Cui
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Suhr S, Hunger D, Walter RRM, Köhn A, van Slageren J, Sarkar B. Air-Stable Dinuclear Complexes of Four-Coordinate Zn II and Ni II Ions with a Radical Bridge: A Detailed Look at Redox Activity and Antiferromagnetic Coupling. Inorg Chem 2024; 63:6042-6050. [PMID: 38502792 DOI: 10.1021/acs.inorgchem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Air-stable dinuclear complexes [(bmsab)NiII(tmsab)NiII(bmsab)]3- and [(bmsab)ZnII(tmsab)ZnII(bmsab)]3- (bmsab = bis(methanesulfoneamido)benzene, tmsab = tetra(methanesulfonamido)benzene) were prepared via a synthetic route based on heteroleptic precursor complexes. The new complexes combine a distorted tetrahedral coordination environment with an open-shell bridging ligand. The ZnII species was subjected to a detailed investigation of the (spectro-)electrochemical processes. The NiII species is a rare example of a complex that combines strong exchange coupling (J > 440 cm-1) with pronounced positive zero-field splitting (D = +72 cm-1). Combining SQUID magnetometry and (HF)EPR spectroscopy with ab initio calculations allowed for accurate quantification of the exchange interaction.
Collapse
Affiliation(s)
- Simon Suhr
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Robert R M Walter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| |
Collapse
|
3
|
David G, Duplaix-Rata G, Le Guennic B. What governs magnetic exchange couplings in radical-bridged dinuclear complexes? Phys Chem Chem Phys 2024; 26:8952-8964. [PMID: 38436408 DOI: 10.1039/d3cp06243k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Coupling transition metal or lanthanide ions through a radical bridging ligand is a promising route to increase performances in the area of single molecular magnets. A better understanding of the underlying physical mechanisms governing the magnetic exchange couplings is thus of valuable importance to design future compounds. Here, couplings in three series of metal-radical-metal compounds based on transition metal ions are investigated by means of the decomposition/recomposition methods. This work presents the generalisation and first application of the method to systems with an arbitrary number of magnetic centres featuring several unpaired electrons. Thanks to the decomposition into the three main contributions (direct exchange, kinetic exchange, and spin polarisation) as well as a description in terms of electron-electron interactions, we study the influence of the nature of the metal centre and the radical ligand on the couplings. We combine the energetic contributions extracted with orbital and charge population analysis to rationalise the results.
Collapse
Affiliation(s)
- Grégoire David
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Gwenhaël Duplaix-Rata
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
4
|
Lien CY, Boyn JN, Anferov SW, Mazziotti DA, Anderson JS. Origin of Weak Magnetic Coupling in a Dimanganese(II) Complex Bridged by the Tetrathiafulvalene-Tetrathiolate Radical. Inorg Chem 2023; 62:19488-19497. [PMID: 37967380 DOI: 10.1021/acs.inorgchem.3c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Magnetic exchange coupling (J) between different spin centers plays a crucial role in molecule-based magnetic materials. Direct exchange coupling between an organic radical and a metal is frequently stronger than superexchange through diamagnetic ligands, and the strategy of using organic radicals to engender desirable magnetic properties has been an area of active investigation. Despite significant advances and exciting bulk properties, the magnitude of J for radical linkers bridging paramagnetic centers is still difficult to rationally predict. It is thus important to elucidate the features of organic radicals that govern this parameter. Here, we measure J for the tetrathiafulvalene-tetrathiolate radical (TTFtt3-•) in a dinuclear Mn(II) complex. Magnetometry studies show that the antiferromagnetic coupling in this complex is much weaker than that in related Mn(II)-radical compounds, in contrast to what might be expected for the S-based chelating donor atoms of TTFtt. Experimental and computational analyses suggest that this small J coupling may be attributed to poor overlap between Mn- and TTFtt-based magnetic orbitals coupled with insignificant spin density on the coordinating S-atoms. These factors override any expected increase in J from the comparatively strong S-donors. This work elucidates the magnetic coupling properties of the TTFtt3-• radical for the first time and also demonstrates how multiple competing factors must be considered in rationally designing organic radical ligands for molecular-based magnetic compounds.
Collapse
Affiliation(s)
- Chen-Yu Lien
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Kamin AA, Moseley IP, Oh J, Brannan EJ, Gannon PM, Kaminsky W, Zadrozny JM, Xiao DJ. Geometry-dependent valence tautomerism, magnetism, and electrical conductivity in 1D iron–tetraoxolene chains. Chem Sci 2023; 14:4083-4090. [PMID: 37063793 PMCID: PMC10094740 DOI: 10.1039/d2sc06392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Here we show how a simple change in the geometry of 1D iron–tetraoxolene chains dramatically alters the observed physical properties, including the presence of valence tautomerism, strong magnetic coupling, and electrical conductivity.
Collapse
Affiliation(s)
- Ashlyn A Kamin
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Ian P Moseley
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Jeewhan Oh
- Department of Chemistry and Chemical Biology, Harvard University Cambridge Massachusetts 02138 USA
| | - E J Brannan
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Dianne J Xiao
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| |
Collapse
|
6
|
Lv H, Li X, Wu D, Liu Y, Li X, Wu X, Yang J. Enhanced Curie Temperature of Two-Dimensional Cr(II) Aromatic Heterocyclic Metal-Organic Framework Magnets via Strengthened Orbital Hybridization. NANO LETTERS 2022; 22:1573-1579. [PMID: 35148110 DOI: 10.1021/acs.nanolett.1c04398] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) with room-temperature magnetism are highly desirable but challenging due to the weak superexchange interaction between metal atoms. For this purpose, strengthening the hybridization between metal ion and organic linkage presents an experiment-feasible chemical solution to enhance the Curie temperature. Here, we report three 2D Cr(II) aromatic heterocyclic MOF magnets with enhanced Curie temperature by bridging Cr(II) ions with pyrazine, 1,4-diphosphinine, and 1,4-diarsenin linkers, i.e., Cr(pyz)2, Cr(diphos)2, and Cr(diarse)2, and using first-principles calculations. Our results show that Cr(pyz)2, Cr(diphos)2, and Cr(diarse)2 are ferrimagnetic semiconductors. In particular, the Curie temperature of Cr(pyz)2 is estimated to be about 344 K and could be enhanced to 512 and 437 K in Cr(diphos)2 and Cr(diarse)2 by strengthening the hybridization between Cr ions and organic linkers via d-π* direct exchange interaction. This study presents a prototype to obtain room-temperature magnetism in 2D Cr(II)-based MOF magnets for nanoscale spintronics applications.
Collapse
Affiliation(s)
- Haifeng Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Daoxiong Wu
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Liu
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Börner M, Klose J, Gutierrez Suburu ME, Strassert CA, Yang F, Monakhov KY, Abel B, Kersting B. Synthesis and Characterisation of Luminescent [Cr III 2 L(μ-carboxylato)] 3+ Complexes with High-Spin S=3 Ground States (L=N 6 S 2 donor ligand). Chemistry 2021; 27:14899-14910. [PMID: 34490947 PMCID: PMC8596867 DOI: 10.1002/chem.202102079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/02/2023]
Abstract
The synthesis, structure, magnetic, and photophysical properties of two dinuclear, luminescent, mixed-ligand [CrIII 2 L(O2 CR)]3+ complexes (R=CH3 (1), Ph (2)) of a 24-membered binucleating hexa-aza-dithiophenolate macrocycle (L)2- are presented. X-ray crystallographic analysis reveals an edge-sharing bioctahedral N3 Cr(μ-SR)2 (μ1,3 -O2 CR)CrN3 core structure with μ1,3 -bridging carboxylate groups. A ferromagnetic superexchange interaction between the electron spins of the Cr3+ ions leads to a high-spin (S=3) ground state. The coupling constants (J=+24.2(1) cm-1 (1), +34.8(4) cm-1 (2), H=-2JS1 S2 ) are significantly larger than in related bis-μ-alkoxido-μ-carboxylato structures. DFT calculations performed on both complexes reproduce both the sign and strength of the exchange interactions found experimentally. Frozen methanol-dichloromethane 1 : 1 solutions of 1 and 2 luminesce at 750 nm when excited into the 4 LMCT state on the 4 A2 → 2 T1 (ν2 ) bands (λexc =405 nm). The absolute quantum yields (ΦL ) for 1 and 2 were found to be strongly temperature dependent. At 77 K in frozen MeOH/CH2 Cl2 glasses, ΦL =0.44±0.02 (for 1), ΦL =0.45±0.02 (for 2).
Collapse
Affiliation(s)
- Martin Börner
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
| | - Jennifer Klose
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
| | - Matias E. Gutierrez Suburu
- Institut für Anorganische und Analytische ChemieCiMICSoNWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCiMICSoNWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Fangshun Yang
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
| | - Kirill Yu. Monakhov
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
| | - Bernd Abel
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstrasse 204103LeipzigGermany
| | - Berthold Kersting
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
| |
Collapse
|
8
|
Domański MA, Grochala W. Superexchange interactions in AgMF4 (M = Co, Ni, Cu) polymorphs. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Magnetic properties of silver(II) compounds have been of interest in recent years. In covalent compounds, the main mechanism of interaction between paramagnetic sites is the superexchange via the connecting ligand. To date, little is known of magnetic interactions between Ag(II) cations and other paramagnetic centres. It is because only a few compounds bearing a Ag(II) cation and other paramagnetic transition metal cation are known from experimental work. Recently the high-pressure synthesis of ternary silver(II) fluoridometallates with 3d metal cations AgMF4 (M = Co, Ni, Cu) was predicted to be feasible. Here, we investigate the magnetic properties of these compounds in their diverse polymorphic forms. Using well-established computational methods we predict superexchange pathways in AgMF4 compounds, evaluate coupling constants and calculate the impact of the Ag(II) presence on superexchange between the other cations. The results indicate that the low-pressure form of AgCuF4, the only one composed of stacked layers like the parent AgF2, would show mainly Ag–Ag and Cu–Cu superexchange interactions. Upon compression, or with the nickel(II) cation, the Ag–M interactions in AgMF4 compounds are intensified, which is emphasized by an increase of Ag–M superexchange coupling constants and Ag–F–M angles. All the strongest Ag–M superexchange pathways are quasi-linear, leading to the formation of antiferromagnetic chains along the crystallographic directions. The impact of Ag(II) on M–M superexchange turns out to be moderate, due to factors connected to the crystal structure.
Collapse
Affiliation(s)
- Mateusz A. Domański
- Centre of New Technologies , University of Warsaw , S. Banacha 2C , 02-097 Warsaw , Poland
| | - Wojciech Grochala
- Centre of New Technologies , University of Warsaw , S. Banacha 2C , 02-097 Warsaw , Poland
| |
Collapse
|
9
|
Pandey D, Narvi SS, Kumar R, Chaudhuri S. Crystal structure and magnetic properties of Cu(II) dinuclear complex with equatorial-axial bridging thiocyanate ligand: Showing ferromagnetic coupling. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Chegerev MG, Starikova AA. Electronic Lability of Quinonoid‐Bridged Dinuclear 3 d‐Metal Complexes with Tetradentate N‐Donor Bases. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maxim G. Chegerev
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachka Avenue 344090 Rostov-on-Don Russian Federation
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachka Avenue 344090 Rostov-on-Don Russian Federation
| |
Collapse
|
11
|
Mavragani N, Kitos AA, Brusso JL, Murugesu M. Enhancing Magnetic Communication between Metal Centres: The Role of s-Tetrazine Based Radicals as Ligands. Chemistry 2021; 27:5091-5106. [PMID: 33079452 DOI: 10.1002/chem.202004215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Although 1,2,4,5-tetrazines or s-tetrazines have been known in the literature for more than a century, their coordination chemistry has become increasingly popular in recent years due to their unique redox activity, multiple binding sites and their various applications. The electron-poor character of the ring and stabilization of the radical anion through all four nitrogen atoms in their metal complexes provide new aspects in molecular magnetism towards the synthesis of new high performing Single Molecule Magnets (SMMs). The scope of this review is to examine the role of s-tetrazine radical ligands in transition metal and lanthanide based SMMs and provide a critical overview of the progress thus far in this field. As well, general synthetic routes and new insights for the preparation of s-tetrazines are discussed, along with their redox activity and applications in various fields. Concluding remarks along with the limitations and perspectives of these ligands are discussed.
Collapse
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Jaclyn L Brusso
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
12
|
Gould CA, Mu E, Vieru V, Darago LE, Chakarawet K, Gonzalez MI, Demir S, Long JR. Substituent Effects on Exchange Coupling and Magnetic Relaxation in 2,2′-Bipyrimidine Radical-Bridged Dilanthanide Complexes. J Am Chem Soc 2020; 142:21197-21209. [DOI: 10.1021/jacs.0c10612] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Veacheslav Vieru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | | | - Selvan Demir
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jeffrey R. Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Chakarawet K, Harris TD, Long JR. Semiquinone radical-bridged M 2 (M = Fe, Co, Ni) complexes with strong magnetic exchange giving rise to slow magnetic relaxation. Chem Sci 2020; 11:8196-8203. [PMID: 34123090 PMCID: PMC8163326 DOI: 10.1039/d0sc03078c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me6tren)2MII 2(C6H4O2 2-)]2+ (Me6tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me6tren)2MII 2(C6H4O2 -˙)]3+. Single-crystal X-ray diffraction shows that the Me6tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p-benzosemiquinone-transition metal magnetic exchange coupling for the first time and find that the nickel(ii) complex exhibits a substantial J < -600 cm-1, resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal-semiquinone exchange constants of J = -144(1) and -252(2) cm-1, respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of U eff = 22 and 46 cm-1, respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear NiII complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation.
Collapse
Affiliation(s)
- Khetpakorn Chakarawet
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - T David Harris
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley Berkeley California 94720 USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
14
|
Vinum MG, Voigt L, Hansen SH, Bell C, Clark KM, Larsen RW, Pedersen KS. Ligand field-actuated redox-activity of acetylacetonate. Chem Sci 2020; 11:8267-8272. [PMID: 34094180 PMCID: PMC8163028 DOI: 10.1039/d0sc01836h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
The quest for simple ligands that enable multi-electron metal-ligand redox chemistry is driven by a desire to replace noble metals in catalysis and to discover novel chemical reactivity. The vast majority of simple ligand systems display electrochemical potentials impractical for catalytic cycles, illustrating the importance of creating new strategies towards energetically aligned ligand frontier and transition metal d orbitals. We herein demonstrate the ability to chemically control the redox-activity of the ubiquitous acetylacetonate (acac) ligand. By employing the ligand field of high-spin Cr(ii) as a switch, we were able to chemically tailor the occurrence of metal-ligand redox events via simple coordination or decoordination of the labile auxiliary ligands. The mechanism of ligand field actuation can be viewed as a destabilization of the d z 2 orbital relative to the π* LUMO of acac, which proffers a generalizable strategy to synthetically engineer redox-activity with seemingly redox-inactive ligands.
Collapse
Affiliation(s)
- Morten Gotthold Vinum
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Laura Voigt
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Steen H Hansen
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Colby Bell
- Department of Chemistry, The University of Memphis Memphis TN USA
| | | | - René Wugt Larsen
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| |
Collapse
|
15
|
Leitl J, Coburger P, Scott DJ, Ziegler CGP, Hierlmeier G, Wolf R, van Leest NP, de Bruin B, Hörner G, Müller C. Phosphorus Analogues of [Ni(bpy)2]: Synthesis and Application in Carbon–Halogen Bond Activation. Inorg Chem 2020; 59:9951-9961. [DOI: 10.1021/acs.inorgchem.0c01115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Leitl
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - P. Coburger
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - D. J. Scott
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - C. G. P. Ziegler
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - G. Hierlmeier
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - R. Wolf
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - N. P. van Leest
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B. de Bruin
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - G. Hörner
- Department of Chemistry, Inorganic Chemistry IV, Unversität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - C. Müller
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34/36, 14195 Berlin, Germany
| |
Collapse
|
16
|
Chandra S, Weisser F, Klenk S, Beerhues J, Schweinfurth D, Sarkar B. Dinuclear Ru II complexes with quinonoid bridges: tuning the electrochemical and spectroscopic properties of redox-switchable NIR dyes through judicious bridge design. Dalton Trans 2020; 49:8354-8366. [PMID: 32519683 DOI: 10.1039/d0dt01351j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bridging quinonoid ligands are important platforms for generating metal-based switchable optoelectronic and magnetic materials. A possible sound way of influencing the properties of the aforementioned materials is to modify the direct metal-ligand interface. We present herein a series of dinuclear RuII complexes where the set of donor atoms at the bridging quinonoid ligands range from [O,O,O,O], [O,O,O,N], [O,N,O,N] and [O,N,O,N']. Additionally, the substituents on the N-donors were varied as well (a total of eight different quinonoid bridges are compared). We also present a mononuclear RuII complex for comparison purposes. The dinuclear complexes act as switchable NIR dyes, absorbing in the NIR region in their mixed-valent RuII/RuIII form but not in the neighboring RuII/RuII and RuIII/RuIII states. The switching potentials (the potentials at which NIR absorptions appear) and the λmax of the NIR band can be fine-tuned by varying the donor atoms as well as the electron-donating ability of the substituents on the nitrogen atoms (tuning E by ca. 0.4 V and λmax by ca. 450 nm). Introducing more electron-rich substituents at the nitrogen atoms of the bridge results in higher band energies and more cathodic redox potentials. Unsymmetrical bridging ligands increase the thermodynamic stability of the mixed-valent state. Whereas almost all of the mixed-valent species presented here belong to the delocalised type III of the Robin-Day classification, the most unsymmetrical complex 2O,N(Mes) shows characteristic signs of a borderline Class-II-III compounds. This comprehensive study thus establishes the lesser used unsymmetrically substituted quinones as excellent bridges for generating and tuning a series of properties in their corresponding metal complexes.
Collapse
Affiliation(s)
- Shubhadeep Chandra
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Boyn JN, Xie J, Anderson JS, Mazziotti DA. Entangled Electrons Drive a Non-superexchange Mechanism in a Cobalt Quinoid Dimer Complex. J Phys Chem Lett 2020; 11:4584-4590. [PMID: 32468819 DOI: 10.1021/acs.jpclett.0c01248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A central theme in chemistry is the understanding of the mechanisms that drive chemical transformations. A well-known, highly cited mechanism in organometallic chemistry is the superexchange mechanism in which unpaired electrons on two or more metal centers interact through an electron pair of the bridging ligand. We use a combination of novel synthesis and computation to show that such interactions may in fact occur by a more direct mechanism than superexchange that is based on direct quantum entanglement of the two metal centers. Specifically, we synthesize and experimentally characterize a novel cobalt dimer complex with benzoquinoid bridging ligands and investigate its electronic structure with the variational two-electron reduced density matrix method using large active spaces. The result draws novel connections between inorganic mechanisms and quantum entanglement, thereby opening new possibilities for the design of strongly correlated organometallic compounds whose magnetic and spin properties have applications in superconductors, energy storage, thermoelectrics, and spintronics.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Goodwin CP, Réant BLL, Vettese GF, Kragskow JGC, Giansiracusa MJ, DiMucci IM, Lancaster KM, Mills DP, Sproules S. Heteroleptic Samarium(III) Chalcogenide Complexes: Opportunities for Giant Exchange Coupling in Bridging σ- and π-Radical Lanthanide Dichalcogenides. Inorg Chem 2020; 59:7571-7583. [PMID: 32421315 PMCID: PMC7268190 DOI: 10.1021/acs.inorgchem.0c00470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 01/19/2023]
Abstract
The introduction of (N2)3-• radicals into multinuclear lanthanide molecular magnets raised hysteresis temperatures by stimulating strong exchange coupling between spin centers. Radical ligands with larger donor atoms could promote more efficient magnetic coupling between lanthanides to provide superior magnetic properties. Here, we show that heavy chalcogens (S, Se, Te) are primed to fulfill these criteria. The moderately reducing Sm(II) complex, [Sm(N††)2], where N†† is the bulky bis(triisopropylsilyl)amide ligand, can be oxidized (i) by diphenyldichalcogenides E2Ph2 (E = S, Se, Te) to form the mononuclear series [Sm(N††)2(EPh)] (E = S, 1-S; Se, 1-Se, Te, 1-Te); (ii) S8 or Se8 to give dinuclear [{Sm(N††)2}2(μ-η2:η2-E2)] (E = S, 2-S2; Se, 2-Se2); or (iii) with Te═PEt3 to yield [{Sm(N††)2}(μ-Te)] (3). These complexes have been characterized by single crystal X-ray diffraction, multinuclear NMR, FTIR, and electronic spectroscopy; the steric bulk of N†† dictates the formation of mononuclear complexes with chalcogenate ligands and dinuclear species with the chalcogenides. The Lα1 fluorescence-detected X-ray absorption spectra at the Sm L3-edge yielded resolved pre-edge and white-line peaks for 1-S and 2-E2, which served to calibrate our computational protocol in the successful reproduction of the spectral features. This method was employed to elucidate the ground state electronic structures for proposed oxidized and reduced variants of 2-E2. Reactivity is ligand-based, forming species with bridging superchalcogenide (E2)-• and subchalcogenide (E2)3-• radical ligands. The extraordinarily large exchange couplings provided by these dichalcogenide radicals reveal their suitability as potential successors to the benchmark (N2)3-• complexes in molecular magnets.
Collapse
Affiliation(s)
- Conrad
A. P. Goodwin
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Benjamin L. L. Réant
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Gianni F. Vettese
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Jon G. C. Kragskow
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Marcus J. Giansiracusa
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Ida M. DiMucci
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M. Lancaster
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - David P. Mills
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stephen Sproules
- WestCHEM,
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
19
|
Thorarinsdottir AE, Bjornsson R, Harris TD. Insensitivity of Magnetic Coupling to Ligand Substitution in a Series of Tetraoxolene Radical-Bridged Fe 2 Complexes. Inorg Chem 2020; 59:4634-4649. [PMID: 32196317 DOI: 10.1021/acs.inorgchem.9b03736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The elucidation of magnetostructural correlations between bridging ligand substitution and strength of magnetic coupling is essential to the development of high-temperature molecule-based magnetic materials. Toward this end, we report the series of tetraoxolene-bridged FeII2 complexes [(Me3TPyA)2Fe2(RL)]n+ (Me3TPyA = tris(6-methyl-2-pyridylmethyl)amine; n = 2: OMeLH2 = 3,6-dimethoxy-2,5-dihydroxo-1,4-benzoquinone, ClLH2 = 3,6-dichloro-2,5-dihydroxo-1,4-benzoquinone, Na2[NO2L] = sodium 3,6-dinitro-2,5-dihydroxo-1,4-benzoquinone; n = 4: SMe2L = 3,6-bis(dimethylsulfonium)-2,5-dihydroxo-1,4-benzoquinone diylide) and their one-electron-reduced analogues. Variable-temperature dc magnetic susceptibility data reveal the presence of weak ferromagnetic superexchange between FeII centers in the oxidized species, with exchange constants of J = +1.2(2) (R = OMe, Cl) and +0.3(1) (R = NO2, SMe2) cm-1. In contrast, X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy establish a ligand-centered radical in the reduced complexes. Magnetic measurements for the radical-bridged species reveal the presence of strong antiferromagnetic metal-radical coupling, with J = -57(10), -60(7), -58(6), and -65(8) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. The minimal effects of substituents in the 3- and 6-positions of RLx-• on the magnetic coupling strength is understood through electronic structure calculations, which show negligible spin density on the substituents and associated C atoms of the ring. Finally, the radical-bridged complexes are single-molecule magnets, with relaxation barriers of Ueff = 50(1), 41(1), 38(1), and 33(1) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. Taken together, these results provide the first examination of how bridging ligand substitution influences magnetic coupling in semiquinoid-bridged compounds, and they establish design criteria for the synthesis of semiquinoid-based molecules and materials.
Collapse
Affiliation(s)
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr 45470, Germany
| | - T David Harris
- Department of Chemistry, Northwestern University, Evanston 60208, Illinois, United States.,Department of Chemistry, University of California, Berkeley 94720, California, United States
| |
Collapse
|
20
|
Abstract
Metal-organic frameworks represent the ultimate chemical platform on which to develop a new generation of designer magnets. In contrast to the inorganic solids that have dominated permanent magnet technology for decades, metal-organic frameworks offer numerous advantages, most notably the nearly infinite chemical space through which to synthesize predesigned and tunable structures with controllable properties. Moreover, the presence of a rigid, crystalline structure based on organic linkers enables the potential for permanent porosity and postsynthetic chemical modification of the inorganic and organic components. Despite these attributes, the realization of metal-organic magnets with high ordering temperatures represents a formidable challenge, owing largely to the typically weak magnetic exchange coupling mediated through organic linkers. Nevertheless, recent years have seen a number of exciting advances involving frameworks based on a wide range of metal ions and organic linkers. This review provides a survey of structurally characterized metal-organic frameworks that have been shown to exhibit magnetic order. Section 1 outlines the need for new magnets and the potential role of metal-organic frameworks toward that end, and it briefly introduces the classes of magnets and the experimental methods used to characterize them. Section 2 describes early milestones and key advances in metal-organic magnet research that laid the foundation for structurally characterized metal-organic framework magnets. Sections 3 and 4 then outline the literature of metal-organic framework magnets based on diamagnetic and radical organic linkers, respectively. Finally, Section 5 concludes with some potential strategies for increasing the ordering temperatures of metal-organic framework magnets while maintaining structural integrity and additional function.
Collapse
Affiliation(s)
| | - T David Harris
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Moseley IP, Lin CY, Zee DZ, Zadrozny JM. Synthesis and magnetic characterization of a dinuclear complex of low-coordinate iron(II). Polyhedron 2020; 175. [PMID: 34092885 DOI: 10.1016/j.poly.2019.114171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-coordinate ions possess exciting magnetic, optical, and reactive properties that may afford novel material physics. Hence, it is important to test both synthetic methods for realizing extended solids of such ions as well as the properties of smaller molecular fragments of envisioned future materials. Herein, we report the synthesis and characterization of a new dinuclear Fe species, [{(Me3Si2)2N}Fe{μ-p-{HN(SiMe3)}(C6Me4){N(SiMe3)}}2Fe{N(SiMe3)2}] (1), formed through a transamination reaction between [Fe{N(SiMe3)2}2]2 and the bulky diamine p-{HN(SiMe3)}2(C6Me4) (L). The Fe centers of this dimer assume a pseudo-trigonal-planar, three-coordinate conformation in 1, bridged by two aromatic diamines. Single-crystal X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy enable the assignment of both Fe centers as the 2+ oxidation state. Magnetic studies show that 1 displays a weak antiferromagnetic exchange interaction (J = -2.33 cm-1) and moderate zero-field splitting (D = 7.51 cm-1). Importantly, these studies demonstrate the viability of using transamination to bridge high-spin low-coordinate metal ions and hence the technique may, in the future, produce new extended structures.
Collapse
Affiliation(s)
- Ian P Moseley
- Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523-1872, United States
| | - Chun-Yi Lin
- Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523-1872, United States
| | - David Z Zee
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, United States
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523-1872, United States
| |
Collapse
|
22
|
He S, Allemond LL, Dunning SG, Reynolds JE, Lynch VM, Humphrey SM. In situ formation and solid-state oxidation of a triselenane NSeN-pincer MOF. Chem Commun (Camb) 2020; 56:1286-1289. [DOI: 10.1039/c9cc07851g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled partial decomposition of 2-selenonicotinic acid in the presence of Co2+ or Ni2+ resulted in the in situ formation of an unusual MOF based on triselenane ligands (RSeSeSeR) coordinated to M2+ centers as NSeN-pincers.
Collapse
Affiliation(s)
- Shichao He
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | | | | | - Vincent M. Lynch
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | |
Collapse
|