1
|
Zaitsev KV, Tolstikov SE, Bogomyakov AS, Veber SL, Sagdeev RZ, Fedin MV. Light-induced spin-state switching in heterospin complexes of Cu(hfac) 2 with pyridine-based nitroxides. Dalton Trans 2025; 54:811-820. [PMID: 39576142 DOI: 10.1039/d4dt02198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Copper(II)-nitroxide based molecular magnets exhibit spin-crossover-like spin state switching, which is topical in field of molecular magnetism. However, establishing reliable structure-property relationships in these systems is still challenging, especially regarding the light-induced switching of spin states. In this paper, we report the investigation of photoswitching and relaxation in a series of heterospin Cu(hfac)2LR complexes with pyridine-based nitroxide ligands (LR), which belong to this family of materials. Using electron paramagnetic resonance (EPR) for detection, we demonstrate very long lifetimes of photoinduced spin states at liquid helium temperatures (<15 K), where relaxation to the ground state does not exceed 15% within two hours. At the same time, the efficiency of photoswitching strongly depends on the structure of the radical ligand in this series: the bulkier the ligand, the smaller the fraction of heterospin clusters that undergo photoswitching. These findings expand the understanding of mechanisms and factors behind photoswitching and relaxation in copper(II)-nitroxide molecular magnets and aid in further research aiming to optimize their functional properties.
Collapse
Affiliation(s)
- Konstantin V Zaitsev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | | | - Sergey L Veber
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Renad Z Sagdeev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
On the origin of non-Markovian kinetics of light-induced magneto-structural relaxation in “breathing” crystals. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Romanenko GV, Fokin SV, Bogomyakov AS, Zueva EM, Ovcharenko VI. A FLATTENED OCTAHEDRON – THE METAL ENVIRONMENT IN COMPLEXES WITH PYRROLYL-SUBSTITUTED NITROXIDE DIRADICALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622030106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Romanenko GV, Fokin SV, Chubakova ET, Bogomyakov AS, Ovcharenko VI. MAGNETIC ANOMALIES IN POLYMERIC CHAIN COMPLEXES Cu(hfac)2 WITH SPIN-LABELED DIALKYLPYRAZOLES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Romanenko GV, Letyagin GA, Ovcharenko VI. Effect of pressure on the structure of multispin complexes. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Pakulski P, Pinkowicz D. 1,2,5-Thiadiazole 1,1-dioxides and Their Radical Anions: Structure, Properties, Reactivity, and Potential Use in the Construction of Functional Molecular Materials. Molecules 2021; 26:4873. [PMID: 34443461 PMCID: PMC8400987 DOI: 10.3390/molecules26164873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
This work provides a summary of the preparation, structure, reactivity, physicochemical properties, and main uses of 1,2,5-thiadiazole 1,1-dioxides in chemistry and material sciences. An overview of all currently known structures containing the 1,2,5-thiadiazole 1,1-dioxide motif (including the anions radical species) is provided according to the Cambridge Structural Database search. The analysis of the bond lengths typical for neutral and anion radical species is performed, providing a useful tool for unambiguous assessment of the valence state of the dioxothiadiazole-based compounds based solely on the structural data. Theoretical methodologies used in the literature to describe the dioxothiadiazoles are also shortly discussed, together with the typical 'fingerprint' of the dioxothiadiazole ring reported by means of various spectroscopic techniques (NMR, IR, UV-Vis). The second part describes the synthetic strategies leading to 1,2,5-thiadiazole 1,1-dioxides followed by the discussion of their electrochemistry and reactivity including mainly the chemical methods for the successful reduction of dioxothiadiazoles to their anion radical forms and the ability to form coordination compounds. Finally, the magnetic properties of dioxothiadiazole radical anions and the metal complexes involving dioxothiadiazoles as ligands are discussed, including simple alkali metal salts and d-block coordination compounds. The last section is a prospect of other uses of dioxothiadiazole-containing molecules reported in the literature followed by the perspectives and possible future research directions involving these compounds.
Collapse
Affiliation(s)
- Paweł Pakulski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Arczyński M, Pinkowicz D. Influence of the Increasing Number of Organic Radicals on the Structural, Magnetic, and Electrochemical Properties of the Copper(II)-Dioxothiadiazole Family of Complexes. Inorg Chem 2020; 59:13489-13501. [PMID: 32907320 PMCID: PMC7509843 DOI: 10.1021/acs.inorgchem.0c01904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 01/17/2023]
Abstract
The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td·-) are reported: {[CuIICl(td)](μ-Cl)2[CuIICl(td)]} (1), which incorporates only neutral td ligands; [CuIICl(td·-)(td)]·2MeCN (2), which comprises one neutral td and one radical td·-; and PPN[CuIICl(td·-)2]·2DMA (3), where CuII ions are coordinated by two radical anions td·- (DMA, dimethylacetamide; PPN+, the bis(triphenylphosphine)iminium cation). All three compounds show interesting paramagnetic behavior with low-temperature features indicating significant antiferromagnetic coupling. The magnetic properties of 1 are dominated by CuII···CuII interactions (JCuCu) mediated through the Cl- bridges, while the magnetic properties of 2 and 3 are governed mainly by the td·-···td·- (Jtdtd) and CuII-td·- (JCutd) exchange interactions. The structure of 2 features only two major magnetic coupling pathways enabling the fitting of experimental data with Jtdtd = -36.0(5) cm-1 and JCutd = -12.6(2) cm-1 only. Compound 3 exhibits a complex network of magnetic contacts. Attempt to approximate its magnetic behavior using only a local magnetic contacts model resulted in Jtdtd = -5.6(1) cm-1 and two JCutd constants, -12.4(2) and -22.6(4) cm-1. The experimental fitting is critically compared with the results of broken symmetry density functional theory (BS DFT) calculations for inter- and intramolecular contacts. More consistent results were obtained with the M06 functional as opposed to popular B3LYP, which encountered problems reproducing some of the experimental intermolecular exchange interactions. Electrochemical measurements of 2 and 3 in MeCN showed three reversible nearly overlapping redox peaks appearing in a narrow potential range of -600 to -100 mV vs Fc/Fc+. Small differences between the redox events suggest that such compounds may be good candidates for new switchable materials, where the electron transfer between the metal and the ligand center is triggered by temperature, pressure, or light (valence tautomerism).
Collapse
Affiliation(s)
- Mirosław Arczyński
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Effect of increasing pressure on the structure and temperature-induced changes in magnetic properties of heterospin complexes. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2932-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Greatorex S, Fokin SV, Kulmaczewski R, Yamada M, Cespedes O, Yoshinari N, Konno T, Sproules S, Ovcharenko VI, Halcrow MA. Modulating the Magnetic Properties of Copper(II)/Nitroxyl Heterospin Complexes by Suppression of the Jahn–Teller Distortion. Inorg Chem 2020; 59:8657-8662. [DOI: 10.1021/acs.inorgchem.0c01345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sam Greatorex
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Sergey V. Fokin
- International Tomography Center, Siberian Branch of Russian Academy of Science, Institutskaya Strasse 3a, Novosibirsk 630090, Russia
| | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Mihoko Yamada
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, EC Stoner Building, Leeds LS2 9JT, U.K
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Victor I. Ovcharenko
- International Tomography Center, Siberian Branch of Russian Academy of Science, Institutskaya Strasse 3a, Novosibirsk 630090, Russia
| | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|