1
|
Daniels BS, Hou X, Corio SA, Weissman LM, Dong VM, Hirschi JS, Nie S. Copper-Phosphido Catalysis: Enantioselective Addition of Phosphines to Cyclopropenes. Angew Chem Int Ed Engl 2023; 62:e202306511. [PMID: 37332088 PMCID: PMC11365472 DOI: 10.1002/anie.202306511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
We describe a copper catalyst that promotes the addition of phosphines to cyclopropenes at ambient temperature. A range of cyclopropylphosphines bearing different steric and electronic properties can now be accessed in high yields and enantioselectivities. Enrichment of phosphorus stereocenters is also demonstrated via a Dynamic Kinetic Asymmetric Transformation (DyKAT) process. A combined experimental and theoretical mechanistic study supports an elementary step featuring insertion of a CuI -phosphido into a carbon-carbon double bond. Density functional theory calculations reveal migratory insertion as the rate- and stereo-determining step, followed by a syn-protodemetalation.
Collapse
Affiliation(s)
- Brian S Daniels
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Lindsey M Weissman
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry, GSK, 1250 S. Collegeville Rd, 19426, Collegeville, PA, USA
| |
Collapse
|
2
|
Wang M, Simon JC, Xu M, Corio SA, Hirschi JS, Dong VM. Copper-Catalyzed Hydroamination: Enantioselective Addition of Pyrazoles to Cyclopropenes. J Am Chem Soc 2023; 145:14573-14580. [PMID: 37390403 PMCID: PMC10433791 DOI: 10.1021/jacs.3c02971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Chiral N-cyclopropyl pyrazoles and structurally related heterocycles are prepared using an earth-abundant copper catalyst under mild reaction conditions with high regio-, diastereo-, and enantiocontrol. The observed N2:N1 regioselectivity favors the more hindered nitrogen of the pyrazole. Experimental and DFT studies support a unique mechanism that features a five-centered aminocupration.
Collapse
Affiliation(s)
- Minghao Wang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Julie C Simon
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mengfei Xu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Gallant SK, Tipker RM, Glueck DS. Copper-Catalyzed Asymmetric Alkylation of Secondary Phosphines via Rapid Pyramidal Inversion in P-Stereogenic Cu–Phosphido Intermediates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah K. Gallant
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ryan M. Tipker
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - David S. Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
4
|
Liu S, Zhang J, Liu C, Yin G, Wu M, Du C, Zhang B. Three-coordinated mononuclear Cu(I) complexes with crystallization-enhanced thermally activated delayed fluorescence characteristics. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Geer AM, Tejel C. Organo-phosphanide and -phosphinidene complexes of Groups 8–11. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Zhang S, Xiao JZ, Li YB, Shi CY, Yin L. Copper(I)-Catalyzed Asymmetric Alkylation of Unsymmetrical Secondary Phosphines. J Am Chem Soc 2021; 143:9912-9921. [PMID: 34160199 DOI: 10.1021/jacs.1c04112] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper(I)-catalyzed asymmetric alkylation of HPAr1Ar2 with alkyl halides is uncovered, which provides an array of P-stereogenic phosphines in generally high yield and enantioselectivity. The electrophilic alkyl halides enjoy a broad substrate scope, including allyl bromides, propargyl bromide, benzyl bromides, and alkyl iodides. Moreover, 11 unsymmetrical diarylphosphines (HPAr1Ar2) serve as competent pronucleophiles. The present methodology is also successfully applied to catalytic asymmetric double and triple alkylation, and the corresponding products were obtained in moderate diastereo- and excellent enantioselectivities. Some 31P NMR experiments indicate that bulky HPPhMes exhibits weak competitively coordinating ability to the Cu(I)-bisphosphine complex, and thus the presence of stoichiometric HPAr1Ar2 does not affect the enantioselectivity significantly. Therefore, the high enantioselectivity in this reaction is attributed to the high performance of the unique Cu(I)-(R,RP)-TANIAPHOS complex in asymmetric induction. Finally, one monophosphine and two bisphosphines prepared by the present reaction are employed as efficient chiral ligands to afford three structurally diversified Cu(I) complexes, which demonstrates the synthetic utility of the present methodology.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chang-Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Abstract
AbstractMetal-catalyzed asymmetric synthesis of P-stereogenic phosphines is a potentially useful approach to a class of chiral ligands with valuable applications in asymmetric catalysis. We introduced this idea with chiral platinum and palladium catalysts, exploiting rapid pyramidal inversion in diastereomeric metal–phosphido complexes (ML*(PRR′)) to control phosphorus stereochemistry. This Account summarizes our attempts to develop related synthetic methods using earth-abundant metals, especially copper, in which weaker metal–ligand bonds and faster substitution processes were expected to result in more active catalysts. Indeed, precious metals were not required. Without any transition metals at all, we exploited related P-epimerization processes to prepare enantiomerically pure phosphiranes and secondary phosphine oxides (SPOs) from commercially available chiral epoxides.1 Introduction2 Copper-Catalyzed Phosphine Alkylation3 Copper-Catalyzed Tandem Phosphine Alkylation/Arylation4 Nickel-Catalyzed Phosphine Alkylation5 Proton-Mediated P-Epimerization in Synthesis of Chiral Phosphiranes6 Diastereoselective Synthesis of P-Stereogenic Secondary Phosphine Oxides (SPOs) from (+)-Limonene Oxide7 Conclusions
Collapse
Affiliation(s)
- David S. Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College
| |
Collapse
|
8
|
Lemouzy S, Giordano L, Hérault D, Buono G. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-Stereogenic Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000406] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sébastien Lemouzy
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Laurent Giordano
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Damien Hérault
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Gérard Buono
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| |
Collapse
|