1
|
Makanyane DM, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Anti-Amyloid Aggregation and Anti-Hyperglycemic Activities of Novel Ruthenium Uracil Schiff Base Compounds. ChemMedChem 2024; 19:e202400477. [PMID: 39136611 DOI: 10.1002/cmdc.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Indexed: 11/10/2024]
Abstract
The formation and characterization of new diamagnetic ruthenium uracil mono-imine compounds: [(η6-p-cymene)RuII(L)Cl][BF4] (L=H2urpda=5-((pyridin-2-yl)methyleneamino)-6-aminouracil) for 1, urdpy=6-amino-1,3-dimethyl-5-((pyridin-2-ylmethylene)amino)uracil) for 2 or urqda=5-((quinolin-2-yl)methyleneamino)-6-aminouracil) for 3); cis-[Ru(bipy)2(urpy)](BF4)2 (4) (urpy=5-((pyridin-2-yl)methyleneamino)uracil) and cis-[Ru(bipy)2(dapd)] (5) (H2dadp=5,6-diaminouracil) are described. A ruthenium(IV) uracil Schiff base compound, trans-[Ru(urpda)(PPh3)Cl2] (6) was also formed. Various physicochemical techniques were utilized to characterize the novel ruthenium compounds. Similarly, the stabilities of 1-3 and 6 monitored in chloro-containing and the non-coordinating solvent, dichloromethane show that they are kinetically inert, whereas, in a high nucleophilic environment, the chloride co-ligands of these ruthenium complexes were rapidly substituted by DMSO. In contrast, the substitution of the labile co-ligands for these ruthenium complexes by DMSO molecules in a high chloride content was suppressed. Solution chemical reactivities of the different ruthenium complexes were rationalized by density functional theory computations. Furthermore, the binding affinities and strengths between BSA and the respective ruthenium complexes were monitored using fluorescence spectroscopy. In addition, the in vitro anti-diabetic activities of the novel metal complexes were assessed in selected skeletal muscle and liver cell lines.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
2
|
Vitillo JG, Cramer CJ, Gagliardi L. Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM Università degli Studi dell'Insubria Via Valleggio 9 I-22100 Como Italy
| | - Christopher J. Cramer
- Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook Illinois 60602 United States
| | - Laura Gagliardi
- Department of Chemistry Pritzker School of Molecular Engineering James Franck Institute University of Chicago Chicago Illinois 60637 United States
| |
Collapse
|
3
|
Gao Y, Pink M, Smith JM. Alkali Metal Ions Dictate the Structure and Reactivity of an Iron(II) Imido Complex. J Am Chem Soc 2022; 144:1786-1794. [DOI: 10.1021/jacs.1c11429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M. Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Yang PC, Yu KP, Hsieh CT, Zou J, Fang CT, Liu HK, Pao CW, Deng L, Cheng MJ, Lin CY. Stabilization of a high-spin three-coordinate Fe(III) imidyl complex by radical delocalization. Chem Sci 2022; 13:9637-9643. [PMID: 36091897 PMCID: PMC9400638 DOI: 10.1039/d2sc02699f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
High-spin, late transition metal imido complexes have attracted significant interest due to their group transfer reactivity and catalytic C−H activation of organic substrates. Reaction of a new two-coordinate iron complex,...
Collapse
Affiliation(s)
- Po-Chun Yang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Kuan-Po Yu
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Junjie Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Chia-Te Fang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 300092 Taiwan
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chun-Yi Lin
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| |
Collapse
|
5
|
Reith S, Demeshko S, Battistella B, Reckziegel A, Schneider C, Stoy A, Lichtenberg C, Meyer F, Munz D, Werncke CG. Between imide, imidyl and nitrene – an imido iron complex in two oxidation states. Chem Sci 2022; 13:7907-7913. [PMID: 35865905 PMCID: PMC9258327 DOI: 10.1039/d2sc01088g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/28/2022] [Indexed: 01/11/2023] Open
Abstract
Imidyl and nitrene metal species play an important role in the N-functionalisation of unreactive C–H bonds as well as the aziridination of olefines. We report on the synthesis of the trigonal imido iron complexes [Fe(NMes)L2]0,− (L = –N{Dipp}SiMe3); Dipp = 2,6-diisopropyl-phenyl; Mes = (2,4,6-trimethylphenyl) via reaction of mesityl azide (MesN3) with the linear iron precursors [FeL2]0,−. UV-vis-, EPR-, 57Fe Mössbauer spectroscopy, magnetometry, and computational methods suggest for the reduced form an electronic structure as a ferromagnetically coupled iron(ii) imidyl radical, whereas oxidation leads to mixed iron(iii) imidyl and electrophilic iron(ii) nitrene character. Reactivity studies show that both complexes are capable of H atom abstraction from C–H bonds. Further, the reduced form [Fe(NMes)L2]− reacts nucleophilically with CS2 by inserting into the imido iron bond, as well as electrophilically with CO under nitrene transfer. The neutral [Fe(NMes)L2] complex shows enhanced electrophilic behavior as evidenced by nitrene transfer to a phosphine, yet in combination with an overall reduced reactivity. A pair of trigonal imido iron complexes ([Fe(NMes)L2]0,−) in two oxidation states is reported. The anionic complex K{crypt.222}[Fe(NMes)L2] is best described as an iron(ii) imide.![]()
Collapse
Affiliation(s)
- Sascha Reith
- Philipps-University Marburg, Department of Chemistry, Hans-Meerwein-Str. 4, D-35037 Marburg, Germany
| | - Serhiy Demeshko
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Beatrice Battistella
- Humboldt-University, Berlin Institute for Chemistry, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Alexander Reckziegel
- Philipps-University Marburg, Department of Chemistry, Hans-Meerwein-Str. 4, D-35037 Marburg, Germany
| | - Christian Schneider
- Philipps-University Marburg, Department of Chemistry, Hans-Meerwein-Str. 4, D-35037 Marburg, Germany
| | - Andreas Stoy
- Philipps-University Marburg, Department of Chemistry, Hans-Meerwein-Str. 4, D-35037 Marburg, Germany
| | - Crispin Lichtenberg
- Philipps-University Marburg, Department of Chemistry, Hans-Meerwein-Str. 4, D-35037 Marburg, Germany
| | - Franc Meyer
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Dominik Munz
- Saarland University, Inorganic Chemistry: Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
- Friedrich-Alexander University Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstr. 1, D-91058 Erlangen, Germany
| | - C. Gunnar Werncke
- Philipps-University Marburg, Department of Chemistry, Hans-Meerwein-Str. 4, D-35037 Marburg, Germany
| |
Collapse
|
6
|
Hong D, Liu Y, Wu L, Lo VK, Toy PH, Law S, Huang J, Che C. Ru
V
‐Acylimido Intermediate in [Ru
IV
(Por)Cl
2
]‐Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dan‐Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Vanessa Kar‐Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Siu‐Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503–1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories Hong Kong SAR China
| |
Collapse
|
7
|
Hong DY, Liu Y, Wu L, Lo VKY, Toy PH, Law SM, Huang JS, Che CM. Ru V -Acylimido Intermediate in [Ru IV (Por)Cl 2 ]-Catalyzed C-N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021; 60:18619-18629. [PMID: 33847064 DOI: 10.1002/anie.202100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.
Collapse
Affiliation(s)
- Dan-Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Siu-Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
8
|
Gao Y, Carta V, Pink M, Smith JM. Catalytic Carbodiimide Guanylation by a Nucleophilic, High Spin Iron(II) Imido Complex. J Am Chem Soc 2021; 143:5324-5329. [PMID: 33793235 DOI: 10.1021/jacs.1c02068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduction of the three-coordinate iron(III) imido [Ph2B(tBuIm)2Fe═NDipp] (1) affords [Ph2B(tBuIm)2Fe═NDipp][K(18-C-6)THF2] (2), a rare example of a high-spin (S = 2) iron(II) imido complex. Unusually for a late metal imido complex, the imido ligand in 2 has nucleophilic character, as demonstrated by the reaction with DippNH2, which establishes an equilibrium with the bis(anilido) complex [Ph2B(tBuIm)2Fe(NHDipp)2][K(18-C-6)THF2] (3). In an unusual transformation, formal insertion of iPrN═C═NiPr into the Fe═N(imido) bond yields the guanidinate [Ph2B(tBuIm)2Fe(iPrN)2CNDipp][K(18-C-6)THF2] (4). Reaction of 4 with excess DippNH2 provides 3, along with the guanidine (iPrNH)2C═NDipp. As suggested by these stoichiometric reactions, 2 is an efficient catalyst for the guanylation of carbodiimides, converting a wide range of aniline substrates under mild conditions.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|