1
|
Maturi F, Gaddam A, Brites CDS, Souza JMM, Eckert H, Ribeiro SJL, Carlos LD, Manzani D. Extending the Palette of Luminescent Primary Thermometers: Yb 3+/Pr 3+ Co-Doped Fluoride Phosphate Glasses. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7229-7238. [PMID: 37719033 PMCID: PMC10500981 DOI: 10.1021/acs.chemmater.3c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Indexed: 09/19/2023]
Abstract
The unique tunable properties of glasses make them versatile materials for developing numerous state-of-the-art optical technologies. To design new optical glasses with tailored properties, an extensive understanding of the intricate correlation between their chemical composition and physical properties is mandatory. By harnessing this knowledge, the full potential of vitreous matrices can be unlocked, driving advancements in the field of optical sensors. We herein demonstrate the feasibility of using fluoride phosphate glasses co-doped with trivalent praseodymium (Pr3+) and ytterbium (Yb3+) ions for temperature sensing over a broad range of temperatures. These glasses possess high chemical and thermal stability, working as luminescent primary thermometers that rely on the thermally coupled levels of Pr3+ that eliminate the need for recurring calibration procedures. The prepared glasses exhibit a relative thermal sensitivity and uncertainty at a temperature of 1.0% K-1 and 0.5 K, respectively, making them highly competitive with the existing luminescent thermometers. Our findings highlight that Pr3+-containing materials are promising for developing cost-effective and accurate temperature probes, taking advantage of the unique versatility of these vitreous matrices to design the next generation of photonic technologies.
Collapse
Affiliation(s)
- Fernando
E. Maturi
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Anuraag Gaddam
- São
Carlos Institute of Physics, University
of São Paulo, IFSC-USP, São Carlos, São Paulo 13566-590, Brazil
| | - Carlos D. S. Brites
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal
| | - Joacilia M. M. Souza
- São
Carlos Institute of Chemistry, University
of São Paulo, IQSC-USP, São Carlos, São Paulo 13560-970, Brazil
| | - Hellmut Eckert
- São
Carlos Institute of Physics, University
of São Paulo, IFSC-USP, São Carlos, São Paulo 13566-590, Brazil
| | - Sidney J. L. Ribeiro
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Luís D. Carlos
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal
| | - Danilo Manzani
- São
Carlos Institute of Chemistry, University
of São Paulo, IQSC-USP, São Carlos, São Paulo 13560-970, Brazil
| |
Collapse
|
2
|
Capelo RG, Gerdes JM, Rehfuß U, Silva LD, Hansen MR, van Wüllen L, Eckert H, Manzani D. Structural characterization of a new fluorophosphotellurite glass system. Dalton Trans 2023; 52:2227-2242. [PMID: 36519202 DOI: 10.1039/d2dt03292a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While phosphotellurite glasses have superior properties over SiO2-based glasses for many applications in optoelectronics and photonic devices, their high hydroxyl content limits their use in the mid-infrared range. This drawback can be overcome by fluoride addition to the formulation. In this work, we report the preparation, optical, and structural characterization of new glasses in the ternary system TeO2-xNaF-NaPO3 having the compositions 0.8TeO2-0.2[xNaF-(1 - x)NaPO3] and 0.6TeO2-0.4[xNaF-(1 - x)NaPO3] (0 ≤ x ≤ 1) obtained by the traditional melt-quenching method and labeled as T8NNx and T6NNx, respectively. Differential scanning calorimetry (DSC) reveals high thermal stability against crystallization, with Tx-Tg varying from 80 to 130 °C, depending on fluoride/phosphate ratios. Raman spectroscopy suggests that the network connectivity increases with increasing phosphate concentration. 125Te, 23Na, 31P, and 19F NMR spectroscopy provides detailed structural information about Te-O-P, Te-F, Te-O-Te, P-O-P, and P-F linkages and the charge compensation mechanism for the sodium ions. The present study is the first comprehensive structural characterization of a fluorophosphotellurite glass system.
Collapse
Affiliation(s)
- Renato Grigolon Capelo
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry - IQSC, University of São Paulo, - USP, São Carlos, SP, Brazil.
| | | | | | - Lais Dantas Silva
- Center of Research, Technology, and Education in Vitreous Materials (CeRTEV), Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | | | | | - Hellmut Eckert
- Institut of Physical Chemistry, WWU Münster, Germany. .,São Carlos Institute of Physics - IFSC, University of São Paulo - USP, São Carlos, SP, Brazil.
| | - Danilo Manzani
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry - IQSC, University of São Paulo, - USP, São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Strutynski C, Evrard M, Le Gendre A, Maldonado A, Désévédavy F, Gadret G, Jules JC, Smektala F. Physicochemical Properties and Fiber-Drawing Ability of Tellurite Glasses in the TeO 2-ZnO-Y 2O 3 Ternary System. MATERIALS 2022; 15:ma15031177. [PMID: 35161120 PMCID: PMC8840513 DOI: 10.3390/ma15031177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023]
Abstract
Glasses in the TeO2-ZnO-Y2O3 (TZY) ternary system are examined in the present work. The vitrification domain of the chosen oxide matrix is determined and differential scanning calorimetry as well as X-ray diffraction measurements are carried out. The material characterizations reveal that Y2O3 incorporation cannot exceed 5 mol.% without causing detrimental crystallization within the glass. Optical transmission and refractive index investigations are conducted on compositions yielding fully amorphous samples. Next, the fiber drawing ability of selected yttrium-containing zinc-tellurite glasses is assessed and fiber-attenuation measurements in the mid-infrared are presented. Finally, a multimode step-index fiber is fabricated by combining a TZY cladding glass with a La2O3-based tellurite core glass. It is believed that yttrium-containing glasses could prove useful in association with other high glass transition temperature (>300 °C) TeO2-based materials for the design of robust optical fibers with precisely engineered refractive index profiles.
Collapse
|