1
|
Tan X, Yu L, Liao X, Chen C, Chu J, Xiong Z, Xia B, Tang W, Li X, Liu Y. A low-toxicity uranyl-selective-binding linear pentapeptide sequence as a potential uranium decorporation agent. RSC Adv 2024; 14:39094-39101. [PMID: 39664247 PMCID: PMC11629939 DOI: 10.1039/d4ra06173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Searching for highly selective, efficient, and low-toxicity chelating agents is central to resolving uranium contamination in vivo. Peptides composed of amino acids exhibit very low toxicity for accumulation in the human body and have been proven effective in chelating actinides within the human body. Herein, we report a rationally designed short phosphorylated peptide sequence PP-B, which exhibits high affinity and selectivity for uranyl compared to other trace elements present in the body (such as Na+, K+, Ca2+, Co2+, Fe2+, Fe3+, Mg2+, Mn2+, Zn2+). The association constant for the peptide-uranyl complex is calculated to be 7.3 ×105 M-1. The result of DFT calculation shows that the phosphate group binds strongly to the UO2 2+ center, potentially accounting for the peptide's strong affinity towards UO2 2+. The results of in vivo uranyl decorporation assays reveal that PP-B has a much lower toxicity and a much higher decorporation efficiency than that of the clinically approved DTPA. These findings render PP-B a promising candidate for utilization as a novel decorporation agent.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Safety Science and Emergency Management, Wuhan University of Technology Wuhan 430070 China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Xindan Liao
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Zhonghua Xiong
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Binyuan Xia
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Yanyan Liu
- School of Safety Science and Emergency Management, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
2
|
Li W, Shen L, Fu S, Li Y, Huang F, Li Q, Lin Q, Liu H, Wang Q, Chen L, Tan H, Li J, Zhao Y, Ran Y, Hao Y. Mitochondrial-Targeting Mesoporous Polydopamine Nanoparticles for Reducing Kidney Injury Caused by Depleted Uranium. Adv Healthc Mater 2024:e2403015. [PMID: 39543790 DOI: 10.1002/adhm.202403015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Depleted uranium (DU), when accidentally released from the nuclear industry, can enter the human body and cause kidney damage, as DU induces oxidative damage and apoptosis through mitochondrial pathways and inflammatory reactions. The existing nanoparticles used to treat DU injury have low bioavailability and poor targeting. In this study, mesoporous polydopamine (MPDA), poly-(ethylene glycol) (PEG), and triphenylphosphonium (TPP) are combined to develop a novel mitochondrion-targeting bifunctional nanoparticle, MPDA-PEG-TPP, and confirm that it can protect the kidneys from DU. This study demonstrates the high selectivity of MPDA-PEG-TPP for uranyl in uranyl chelate assays and its promising efficiency in uranyl sequestration from the kidneys, lungs, and femurs, following immediate or delayed administration of MPDA-PEG-TPP nanoparticles. In vitro assays confirm its efficiency in removing reactive oxygen species and targeting the mitochondria. In addition, in vitro and in vivo assays confirm that MPDA-PEG-TPP can reduce mitochondrial dysfunction and ameliorate kidney injury. These results suggest that MPDA-PEG-TPP is a valuable agent for ameliorating the DU-induced kidney injury.
Collapse
Affiliation(s)
- Wenrun Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Li Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Shiyan Fu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yong Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Feng Huang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Qi Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Qinyang Lin
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Hongjia Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Qiuchi Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Liyi Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Huanhuan Tan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
3
|
Liu Y, Zhao B, He P, Wang Z, Tang K, Mou Z, Tan Y, Wu L, Chen G, Li X, Zhu L, Duan T. Cinnamic Acid: A Low-Toxicity Natural Bidentate Ligand for Uranium Decorporation. Inorg Chem 2024; 63:7464-7472. [PMID: 38598182 DOI: 10.1021/acs.inorgchem.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Uranium accumulation in the kidneys and bones following internal contamination results in severe damage, emphasizing the pressing need for the discovery of actinide decorporation agents with efficient removal of uranium and low toxicity. In this work, cinnamic acid (3-phenyl-2-propenoic acid, CD), a natural aromatic carboxylic acid, is investigated as a potential uranium decorporation ligand. CD demonstrates markedly lower cytotoxicity than that of diethylenetriaminepentaacetic acid (DTPA), an actinide decorporation agent approved by the FDA, and effectively removes approximately 44.5% of uranyl from NRK-52E cells. More importantly, the results of the prompt administration of the CD solution remove 48.2 and 27.3% of uranyl from the kidneys and femurs of mice, respectively. Assessments of serum renal function reveal the potential of CD to ameliorate uranyl-induced renal injury. Furthermore, the single crystal of CD and uranyl compound (C9H7O2)2·UO2 (denoted as UO2-CD) reveals the formation of uranyl dimers as secondary building units. Thermodynamic analysis of the solution shows that CD coordinates with uranyl to form a 2:1 molar ratio complex at a physiological pH of 7.4. Density functional theory (DFT) calculations further show that CD exhibits a significant 7-fold heightened affinity for uranyl binding in comparison to DTPA.
Collapse
Affiliation(s)
- Yawen Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 629000, China
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621010, China
| | - Bin Zhao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Pan He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Zeru Wang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621010, China
| | - Kui Tang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621010, China
| | - Zhiwei Mou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Yi Tan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Linzhen Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Guangyuan Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621010, China
| | - Lin Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621010, China
| |
Collapse
|
4
|
Arrambide C, Ferrie L, Prelot B, Geneste A, Monge S, Darcos V. α-Aminobisphosphonate Copolymers Based on Poly(ε-caprolactone)s and Poly(ethylene glycol): A New Opportunity for Actinide Complexation. Biomacromolecules 2023; 24:5058-5070. [PMID: 37676932 DOI: 10.1021/acs.biomac.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Original α-aminobisphosphonate-based copolymers were synthesized and successfully used for actinide complexation. For this purpose, poly(α-chloro-ε-caprolactone-co-ε-caprolactone)-b-poly(ethylene glycol)-b-poly(α-chloro-ε-caprolactone-co-ε-caprolactone) copolymers were first prepared by ring-opening copolymerization of ε-caprolactone (εCL) and α-chloro-ε-caprolactone using poly(ethylene glycol) (PEG) as a macro-initiator and tin(II) octanoate as a catalyst. The chloride functions were then converted to azide moieties by chemical modification, and finally α-aminobisphosphonate alkyne ligand (TzBP) was grafted using click chemistry, to afford well-defined poly(αTzBPεCL-co-εCL)-b-PEG-b-poly(αTzBPεCL-co-εCL) copolymers. Three copolymers, showing different α-aminobisphosphonate group ratios, were prepared (7, 18, and 38%), namely, CP8, CP9, and CP10, respectively. They were characterized by 1H and 31P NMR and size exclusion chromatography. Sorption properties of these copolymers were evaluated by isothermal titration calorimetry (ITC) with neodymium [Nd(III)] and cerium [Ce(III)] cations, used as surrogates of actinides, especially uranium and plutonium, respectively. ITC enabled the determination of the full thermodynamic profile and the calculation of the complete set of thermodynamic parameter (ΔH, TΔS, and ΔG), with the Ka constant and the n stoichiometry. The results showed that the number of cations sorbed by the functional copolymers logically increased with the number of bisphosphonate functions borne by the macromolecular chain, independently of the complexed cation. Additionally, CP9 and CP10 copolymers showed higher sorption capacities [21.4 and 34.0 mg·g-1 for Nd(III) and 9.6 and 14.3 mg·g-1 for Ce(III), respectively] than most of the systems previously described in the literature. CP9 also showed a highest binding constant (7000 M-1). These copolymers, based on non-toxic and biocompatible poly(ε-caprolactone) and PEG, are of great interest for external body decontamination of actinides as they combine high number of complexing groups, thus leading to great decontamination efficiency, and limited diffusion through the skin due to their high-molecular weight, thus avoiding additional possible internal contamination.
Collapse
Affiliation(s)
| | - Loona Ferrie
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Amine Geneste
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sophie Monge
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Vincent Darcos
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
5
|
Chen B, Hong S, Dai X, Li X, Huang Q, Sun T, Cao D, Zhang H, Chai Z, Diwu J, Wang S. In Vivo Uranium Decorporation by a Tailor-Made Hexadentate Ligand. J Am Chem Soc 2022; 144:11054-11058. [PMID: 35699271 DOI: 10.1021/jacs.2c00688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequestration of uranium, particularly from the deposited bones, has been an incomplete task in chelation therapy for actinide decorporation. Part of the reason is that all previous decorporation ligands are not delicately designed to meet the coordination requirement of uranyl cations. Herein, guided by DFT calculation, we elaborately design a hexadentate ligand (TAM-2LI-MAM2), whose preorganized planar oxo-donor configuration perfectly matches the typical coordination geometry of the uranyl cation. This leads to an ultrahigh binding affinity to uranyl supported by an in vitro desorption experiment of uranyl phosphate. Administration of this ligand by prompt intraperitoneal injection demonstrates its uranyl removal efficiencies from the kidneys and bones are up to 95.4% and 81.2%, respectively, which notably exceeds all the tested chelating agents as well as the clinical drug ZnNa3-DTPA, setting a new record in uranyl decorporation efficacy.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Sheng Hong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ximeng Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qi Huang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Tingfeng Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dehan Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Wang X, Shi C, Guan J, Chen Y, Xu Y, Diwu J, Wang S. The development of molecular and nano actinide decorporation agents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Woods JJ, Unnerstall R, Hasson A, Abou DS, Radchenko V, Thorek DLJ, Wilson JJ. Stable Chelation of the Uranyl Ion by Acyclic Hexadentate Ligands: Potential Applications for 230U Targeted α-Therapy. Inorg Chem 2022; 61:3337-3350. [PMID: 35137587 PMCID: PMC9382226 DOI: 10.1021/acs.inorgchem.1c03972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Uranium-230 is an α-emitting radionuclide with favorable properties for use in targeted α-therapy (TAT), a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To successfully implement this radionuclide for TAT, a bifunctional chelator that can stably bind uranium in vivo is required. To address this need, we investigated the acyclic ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox as uranium chelators. The stability constants of these ligands with UO22+ were measured via spectrophotometric titrations, revealing log βML values that are greater than 18 and 26 for the "pa" and "hox" chelators, respectively, signifying that the resulting complexes are exceedingly stable. In addition, the UO22+ complexes were structurally characterized by NMR spectroscopy and X-ray crystallography. Crystallographic studies reveal that all six donor atoms of the four ligands span the equatorial plane of the UO22+ ion, giving rise to coordinatively saturated complexes that exclude solvent molecules. To further understand the enhanced thermodynamic stabilities of the "hox" chelators over the "pa" chelators, density functional theory (DFT) calculations were employed. The use of the quantum theory of atoms in molecules revealed that the extent of covalency between all four ligands and UO22+ was similar. Analysis of the DFT-computed ligand strain energy suggested that this factor was the major driving force for the higher thermodynamic stability of the "hox" ligands. To assess the suitability of these ligands for use with 230U TAT in vivo, their kinetic stabilities were probed by challenging the UO22+ complexes with the bone model hydroxyapatite (HAP) and human plasma. All four complexes were >95% stable in human plasma for 14 days, whereas in the presence of HAP, only the complexes of H2CHXdedpa and H2hox remained >80% intact over the same period. As a final validation of the suitability of these ligands for radiotherapy applications, the in vivo biodistribution of their UO22+ complexes was determined in mice in comparison to unchelated [UO2(NO3)2]. In contrast to [UO2(NO3)2], which displays significant bone uptake, all four ligand complexes do not accumulate in the skeletal system, indicating that they remain stable in vivo. Collectively, these studies suggest that the equatorial-spanning ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox are highly promising candidates for use in 230U TAT.
Collapse
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ryan Unnerstall
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abbie Hasson
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Diane S. Abou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Valery Radchenko
- Life Science Division, TRIUMF, Vancouver, BC Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, BC V6T 2A3, Canada
| | - Daniel L. J. Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Mayhugh JT, Niklas JE, Forbes MG, Gorden JD, Gorden AEV. Pyrrophens: Pyrrole-Based Hexadentate Ligands Tailor-Made for Uranyl (UO 22+) Coordination and Molecular Recognition. Inorg Chem 2020; 59:9560-9568. [PMID: 32590898 DOI: 10.1021/acs.inorgchem.0c00439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Derivatives of a novel pyrrole-containing Schiff base ligand system (called "pyrrophen") are presented which feature substituted phenylene linkers (R1 = R2 = H (H2L1); R1 = R2 = CH3 (H2L2)) and a binding pocket modeled after macrocyclic species. These ligands bind neutral CH3OH in the solid state through pyrrolic hydrogen-bonding. The interaction of the uranyl cation (UO22+) and H2L1-2 yields planar hexagonal bipyramdial uranyl complexes, while the Cu2+ and Zn2+ complexes were found to self-assemble as dinuclear helicate complexes (M2L2) with H2L1 under identical conditions. The favorable binding of UO22+ over Zn2+ provides insight into the molecular recognition of uranyl over other metal species. Structural features of these complexes are examined with special attention to features of the UO22+ coordination environment which distinguish them from other related salophen and porphyrinoid complexes.
Collapse
Affiliation(s)
- Jacob T Mayhugh
- Auburn University, Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Julie E Niklas
- Auburn University, Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Madeleine G Forbes
- Auburn University, Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - John D Gorden
- Auburn University, Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Anne E V Gorden
- Auburn University, Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|