1
|
Łuczkowski M, Leszczyńska W, Wątły J, Clemens S, Krężel A. Phytochelatins Bind Zn(II) with Micro- to Picomolar Affinities without the Formation of Binuclear Complexes, Exhibiting Zinc Buffering and Muffling Rather than Storing Functions. Inorg Chem 2024; 63:10915-10931. [PMID: 38845098 PMCID: PMC11191002 DOI: 10.1021/acs.inorgchem.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Phytochelatins (PCs) are poly-Cys peptides containing a repeating γ-Glu-Cys motif synthesized in plants, algae, certain fungi, and worms by PC synthase from reduced glutathione. It has been shown that an excess of toxic metal ions induces their biosynthesis and that they are responsible for the detoxification process. Little is known about their participation in essential metal binding under nontoxic, basal conditions under which PC synthase is active. This study presents spectroscopic and thermodynamic interactions with the PC2-PC5 series, mainly focusing on the relations between Zn(II) complex stability and cellular Zn(II) availability. The investigations employed mass spectrometry, UV-vis spectroscopy, potentiometry, competition assays with zinc probes, and isothermal titration calorimetry (ITC). All peptides form ZnL complexes, while ZnL2 was found only for PC2, containing two to four sulfur donors in the coordination sphere. Binuclear species typical of Cd(II)-PC complexes are not formed in the case of Zn(II). Results demonstrate that the affinity for Zn(II) increases linearly from PC2 to PC4, ranging from micro- to low-picomolar. Further elongation does not significantly increase the stability. Stability elevation is driven mainly by entropic factors related to the chelate effect and conformational restriction rather than enthalpic factors related to the increasing number of sulfur donors. The affinity of the investigated PCs falls within the range of exchangeable Zn(II) concentrations (hundreds of pM) observed in plants, supporting for the first time a role of PCs both in buffering and in muffling cytosolic Zn(II) concentrations under normal conditions, not exposed to zinc excess, where short PCs have been identified in numerous studies. Furthermore, we found that Cd(II)-PC complexes demonstrate significantly higher metal capacities due to the formation of polynuclear species, which are lacking for Zn(II), supporting the role of PCs in Cd(II) storage (detoxification) and Zn(II) buffering and muffling. Our results on phytochelatins' coordination chemistry and thermodynamics are important for zinc biology and understanding the molecular basis of cadmium toxicity, leaving room for future studies.
Collapse
Affiliation(s)
- Marek Łuczkowski
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Weronika Leszczyńska
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Joanna Wątły
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Stephan Clemens
- Department
of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, 95440 Bayreuth, Germany
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Shukla AK, Mahale A, Choudhary S, Sharma P, Kulkarni OP, Bhattacharya A. Development and Validation of a Fluorogenic Probe for Lysosomal Zinc Release. Chembiochem 2024; 25:e202300783. [PMID: 38038368 DOI: 10.1002/cbic.202300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Zinc homeostasis, which allows optimal zinc utilization in diverse life processes, is responsible for the general well-being of human beings. This paper describes developing and validating an easily accessible indole-containing zinc-specific probe in the cellular milieu. The probe was synthesized from readily available starting materials and was subjected to steady-state fluorescence studies. It showed selective sensing behavior towards Zn2+ with reversible binding. The suppression of PET (Photoinduced Electron Transfer) and ESIPT (Excited State Intramolecular Proton Transfer) elicited selectivity, and the detection limit was 0.63 μM (LOQ 6.8 μM). The zinc sensing capability of the probe was also screened in the presence of low molecular weight ligands [LMWLs] and showed interference only with GSH and ATP. It is non-toxic and can detect zinc in different cell lines under various stress conditions such as inflammation, hyperglycemia, and apoptosis. The probe could stain the early and late stages of apoptosis in PAN-2 cells by monitoring the zinc release. Most experiments were conducted without external zinc supplementation, showing its innate ability to detect zinc.
Collapse
Affiliation(s)
- Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Savita Choudhary
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| |
Collapse
|
3
|
Liu W, Jakobs J, Rink L. Proton-Pump Inhibitors Suppress T Cell Response by Shifting Intracellular Zinc Distribution. Int J Mol Sci 2023; 24:ijms24021191. [PMID: 36674704 PMCID: PMC9867219 DOI: 10.3390/ijms24021191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Proton-pump inhibitors (PPI), e.g., omeprazole or pantoprazole, are the most widely used drugs for various gastrointestinal diseases. However, more and more side effects, especially an increased risk of infections, have been reported in recent years. The underlying mechanism has still not yet been fully uncovered. Hence, in this study, we analyzed the T cell response after treatment with pantoprazole in vitro. Pantoprazole preincubation reduced the production and secretion of interferon (IFN)-γ and interleukin (IL)-2 after the T cells were activated with phytohemagglutinin (PHA)-L or toxic shock syndrome toxin-1 (TSST-1). Moreover, a lower zinc concentration in the cytoplasm and a higher concentration in the lysosomes were observed in the pantoprazole-treated group compared to the untreated group. We also tested the expression of the zinc transporter Zrt- and Irt-like protein (Zip)8, which is located in the lysosomal membrane and plays a key role in regulating intracellular zinc distribution after T cell activation. Pantoprazole reduced the expression of Zip8. Furthermore, we measured the expression of cAMP-responsive element modulator (CREM) α, which directly suppresses the expression of IL-2, and the expression of the phosphorylated cAMP response element-binding protein (pCREB), which can promote the expression of IFN-γ. The expression of CREMα was dramatically increased, and different isoforms appeared, whereas the expression of pCREB was downregulated after the T cells were treated with pantoprazole. In conclusion, pantoprazole downregulates IFN-γ and IL-2 expression by regulating the expression of Zip8 and pCREB or CREMα, respectively.
Collapse
|
4
|
Zhang C, Dischler A, Glover K, Qin Y. Neuronal signalling of zinc: from detection and modulation to function. Open Biol 2022; 12:220188. [PMID: 36067793 PMCID: PMC9448499 DOI: 10.1098/rsob.220188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that stabilizes protein structures and allosterically modulates a plethora of enzymes, ion channels and neurotransmitter receptors. Labile zinc (Zn2+) acts as an intracellular and intercellular signalling molecule in response to various stimuli, which is especially important in the central nervous system. Zincergic neurons, characterized by Zn2+ deposits in synaptic vesicles and presynaptic Zn2+ release, are found in the cortex, hippocampus, amygdala, olfactory bulb and spinal cord. To provide an overview of synaptic Zn2+ and intracellular Zn2+ signalling in neurons, the present paper summarizes the fluorescent sensors used to detect Zn2+ signals, the cellular mechanisms regulating the generation and buffering of Zn2+ signals, as well as the current perspectives on their pleiotropic effects on phosphorylation signalling, synapse formation, synaptic plasticity, as well as sensory and cognitive function.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Anna Dischler
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Kaitlyn Glover
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
5
|
López-Solís L, Companys E, Puy J, Blindauer CA, Galceran J. Direct determination of free Zn concentration in samples of biological interest. Anal Chim Acta 2022; 1229:340195. [DOI: 10.1016/j.aca.2022.340195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
|
6
|
Michielsen CMS, van Aalen EA, Merkx M. Ratiometric Bioluminescent Zinc Sensor Proteins to Quantify Serum and Intracellular Free Zn 2. ACS Chem Biol 2022; 17:1567-1576. [PMID: 35611686 PMCID: PMC9207811 DOI: 10.1021/acschembio.2c00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Fluorescent Zn2+ sensors play a pivotal role in zinc
biology, but their application in complex media such as blood serum
or plate reader-based cellular assays is hampered by autofluorescence
and light scattering. Bioluminescent sensor proteins provide an attractive
alternative to fluorescent sensors for these applications, but the
only bioluminescent sensor protein developed so far, BLZinCh, has
a limited sensor response and a suboptimal Zn2+ affinity.
In this work, we expanded the toolbox of bioluminescent Zn2+ sensors by developing two new sensor families that show a large
change in the emission ratio and cover a range of physiologically
relevant Zn2+ affinities. The LuZi platform relies on competitive
complementation of split NanoLuc luciferase and displays a robust,
2-fold change in red-to-blue emission, allowing quantification of
free Zn2+ between 2 pM and 1 nM. The second platform was
developed by replacing the long flexible GGS linker in the original
BLZinCh sensor by rigid polyproline linkers, yielding a series of
BLZinCh-Pro sensors with a 3–4-fold improved ratiometric response
and physiologically relevant Zn2+ affinities between 0.5
and 1 nM. Both the LuZi and BLZinCh-Pro sensors allowed the direct
determination of low nM concentrations of free Zn2+ in
serum, providing an attractive alternative to more laborious and/or
indirect approaches to measure serum zinc levels. Furthermore, the
genetic encoding of the BLZinCh-Pro sensors allowed their use as intracellular
sensors, where the sensor occupancy of 40–50% makes them ideally
suited to monitor both increases and decreases in intracellular free
Zn2+ concentration in simple, plate reader-based measurements,
without the need for fluorescence microscopy.
Collapse
|
7
|
Ghosh P, Pramanik K, Paul S, Dey D, Kumar Chandra S, Kanti Mukhopadhyay S, Chandra Murmu N, Banerjee P. Zn
2+
Recognition for Pathogenesis of
Pick's Disease
via a Luminescent Test Kit. ChemistrySelect 2021. [DOI: 10.1002/slct.202100908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
| | - Koushik Pramanik
- Department of Chemistry Visva-Bharati University Santiniketan 731235 India
| | - Suparna Paul
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Debanjan Dey
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | | | | | - Naresh Chandra Murmu
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|