1
|
Bould J, Londesborough MGS, Tok OL. Experimental and Computational 77Se NMR Spectroscopic Study on Selenaborane Cluster Compounds. Inorg Chem 2024; 63:16186-16193. [PMID: 39160773 PMCID: PMC11372749 DOI: 10.1021/acs.inorgchem.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Calculated and measured 77Se nuclear magnetic resonance (NMR) chemical shift data on a diverse collection of 13 selenaborane cluster compounds, containing a total of 19 selenium centers, reveals a correlation between chemical shifts and the intracluster coordination of selenium atoms within their borane frameworks. A plot of the measured against calculated 77Se NMR chemical shifts shows an approximately linear relationship that can serve as a predictive tool in assessing the chemical shift range in which a selenium vertex from a particular compound might be expected to be found, thereby reducing expensive experimental time. Furthermore, the relative chemical shifts between selenium vertices in clusters containing more than one selenium atom are consistent across the range, thus allowing the assignment of the selenium resonances with a high degree of confidence even in relatively low-level density functional theory calculations. A new macropolyhedral 20-vertex selenaborane Se2B18H20 (A) is also reported.
Collapse
Affiliation(s)
- Jonathan Bould
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| | - Michael G S Londesborough
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| | - Oleg L Tok
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| |
Collapse
|
2
|
Dai C, Huang Y, Zhu J. Predicting Dinitrogen Activation by Carborane-Based Frustrated Lewis Pairs. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Reactivity Studies of Phosphinines: The Selenation of Diphenyl-Phosphine Substituents and Formation of a Chelating Bis(Phosphinine) Palladium(II) Complex. INORGANICS 2022. [DOI: 10.3390/inorganics10020017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphinines and donor-substituted phosphinines are of recent interest due to their use in homogeneous catalysis. In this article, a Pd(II) bis(phosphinine) complex was characterised and phosphorus–selenium coupling constants were used to assess the donor properties of the diphenylphosphine substituents of phosphinine ligands to promote their further use in catalysis. The selenation of 2,5-bis(diphenylphosphino)-3,6-dimethylphosphinine (5) and 2-diphenylphosphino-3-methyl-6-trimethylsilylphosphinine (6) gave the corresponding phosphine selenides 8 and 9, respectively, leaving the phosphinine ring intact. Multinuclear NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction confirmed the oxidation of all the diphenylphosphine substituents with 1JP-Se coupling constants determined to be similar to SePPh3, indicating that the phosphinine rings were electronically similar to phenyl substituents. Solutions of 6 were found to react with oxygen slowly to produce the phosphine oxide 10 along with other by-products. The reaction of [bis{3-methyl-6-(trimethylsilyl)phosphinine-2-yl}dimethylsilane] (4) with [PdCl2(COD)] gave the chelating dichloropalladium(II) complex, as determined by multinuclear NMR spectroscopy, mass spectrometry and an elemental analysis. The molecular structure of the intermediate 2 in the formation of 4,6-di(tert-butyl)-1,3,2-diazaphosphinine (3) was also determined, which confirmed the structure of the diazaphosphacycle P(Cl){N=C(tBu)CH=C(tBu)-N(H)}.
Collapse
|
4
|
Jeans RJ, Rosair GM, Welch AJ. C, C'-Ru to C, B'-Ru isomerisation in bis(phosphine)Ru complexes of [1,1'-bis( ortho-carborane)]. Chem Commun (Camb) 2021; 58:64-67. [PMID: 34873603 DOI: 10.1039/d1cc06119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the first example of the controlled isomerisation of a C,C'-bound (to metal) bis(ortho-carborane) ligand to C,B'-bound with no other change in the molecule. Since the C and B vertices of carboranes have different electron-donating properties this transformation allows the reactivity of the metal centre to be fine-tuned.
Collapse
Affiliation(s)
- Rebekah J Jeans
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Georgina M Rosair
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Alan J Welch
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
5
|
Jeans RJ, Chan AP, Murrell AH, Chouman HA, Rosair GM, Welch AJ. Metalation of Bis(meta-carborane). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Sivaev IB, Stogniy MY, Bregadze VI. Transition metal complexes with carboranylphosphine ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Mu X, Hopp M, Dziedzic RM, Waddington MA, Rheingold AL, Sletten EM, Axtell JC, Spokoyny AM. Expanding the Scope of Palladium-Catalyzed B - N Cross-Coupling Chemistry in Carboranes. Organometallics 2020; 39:4380-4386. [PMID: 34012188 DOI: 10.1021/acs.organomet.0c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past several years, a number of strategies for the functionalization of dicarba-closo-dodecaboranes (carboranes) have emerged. Despite these developments, B - N bond formation on the carborane scaffold remains a challenge due to the propensity of strong nucleophiles to partially deboronate the parent closo-carborane cluster into the corresponding nido form. Here we show that azide, sulfonamide, cyanate, and phosphoramidate nucleophiles can be straightforwardly cross-coupled onto the B(9) vertices of the o- and m-carborane core from readily accessible precursors without significant deboronation by-products, laying the groundwork for further study into the utility and properties of these new B-aminated carborane species. We further showcase select reactivity of the installed functional groups highlighting some unique features stemming from the combination of the electron-donating B(9) position and the large steric profile of the B-connected carborane substituent.
Collapse
Affiliation(s)
- Xin Mu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Morgan Hopp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Rafal M Dziedzic
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Mary A Waddington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
|
9
|
Chan AP, Parkinson JA, Rosair GM, Welch AJ. Bis(phosphine)hydridorhodacarborane Derivatives of 1,1′-Bis(ortho-carborane) and Their Catalysis of Alkene Isomerization and the Hydrosilylation of Acetophenone. Inorg Chem 2020; 59:2011-2023. [DOI: 10.1021/acs.inorgchem.9b03351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antony P.Y. Chan
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - John A. Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Georgina M. Rosair
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Alan J. Welch
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|