1
|
Rojas-Poblete M, Rodríguez-Kessler PL, Guajardo-Maturana R, Olea Ulloa C, Muñoz-Castro A. Nature and Role of Formal Charge of the ion Inclusion in Hexanuclear Platinium(II) Host-Guest Species. Insights from Relativistic DFT Calculations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Passadis SS, Hadjithoma S, Siafarika P, Kalampounias AG, Keramidas AD, Miras HN, Kabanos TA. Synthesis, Structural and Physicochemical Characterization of a Titanium(IV) Compound with the Hydroxamate Ligand N,2-Dihydroxybenzamide. Molecules 2021; 26:5588. [PMID: 34577059 PMCID: PMC8465426 DOI: 10.3390/molecules26185588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
The siderophore organic ligand N,2-dihydroxybenzamide (H2dihybe) incorporates the hydroxamate group, in addition to the phenoxy group in the ortho-position and reveals a very rich coordination chemistry with potential applications in medicine, materials, and physical sciences. The reaction of H2dihybe with TiCl4 in methyl alcohol and KOH yielded the tetranuclear titanium oxo-cluster (TOC) [TiIV4(μ-O)2(HOCH3)4(μ-Hdihybe)4(Hdihybe)4]Cl4∙10H2O∙12CH3OH (1). The titanium compound was characterized by single-crystal X-ray structure analysis, ESI-MS, 13C, and 1H NMR spectroscopy, solid-state and solution UV-Vis, IR vibrational, and luminescence spectroscopies and molecular orbital calculations. The inorganic core Ti4(μ-O)2 of 1 constitutes a rare structural motif for discrete TiIV4 oxo-clusters. High-resolution ESI-MS studies of 1 in methyl alcohol revealed the presence of isotopic distribution patterns which can be attributed to the tetranuclear clusters containing the inorganic core {Ti4(μ-O)2}. Solid-state IR spectroscopy of 1 showed the presence of an intense band at ~800 cm-1 which is absent in the spectrum of the H2dihybe and was attributed to the high-energy ν(Ti2-μ-O) stretching mode. The ν(C=O) in 1 is red-shifted by ~10 cm-1, while the ν(N-O) is blue-shifted by ~20 cm-1 in comparison to H2dihybe. Density Functional Theory (DFT) calculations reveal that in the experimental and theoretically predicted IR absorbance spectra of the ligand and Ti-complex, the main bands observed in the experimental spectra are also present in the calculated spectra supporting the proposed structural model. 1H and 13C NMR solution (CD3OD) studies of 1 reveal that it retains its integrity in CD3OD. The observed NMR changes upon addition of base to a CD3OD solution of 1, are due to an acid-base equilibrium and not a change in the TiIV coordination environment while the decrease in the complex's lability is due to the improved electron-donating properties which arise from the ligand deprotonation. Luminescence spectroscopic studies of 1 in solution reveal a dual narrow luminescence at different excitation wavelengths. The TOC 1 exhibits a band-gap of 1.98 eV which renders it a promising candidate for photocatalytic investigations.
Collapse
Affiliation(s)
- Stamatis S. Passadis
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Sofia Hadjithoma
- Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus;
| | - Panagiota Siafarika
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Angelos G. Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | | | | | - Themistoklis A. Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
3
|
Toporivska Y, Mular A, Piasta K, Ostrowska M, Illuminati D, Baldi A, Albanese V, Pacifico S, Fritsky IO, Remelli M, Guerrini R, Gumienna-Kontecka E. Thermodynamic Stability and Speciation of Ga(III) and Zr(IV) Complexes with High-Denticity Hydroxamate Chelators. Inorg Chem 2021; 60:13332-13347. [PMID: 34414758 PMCID: PMC8424644 DOI: 10.1021/acs.inorgchem.1c01622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Increasing attention
has been recently devoted to 89Zr(IV) and 68Ga(III) radionuclides, due to their favorable
decay characteristics for positron emission tomography (PET). In the
present paper, a deep investigation is presented on Ga(III) and Zr(IV)
complexes with a series of tri-(H3L1, H3L3, H3L4 and desferrioxamine
E, DFOE) and tetrahydroxamate (H4L2) ligands. Herein, we describe the rational
design and synthesis of two cyclic complexing agents (H3L1 and H4L2) bearing three and four hydroxamate
chelating groups, respectively. The ligand structures allow us to
take advantage of the macrocyclic effect; the H4L2 chelator contains an additional side
amino group available for a possible further conjugation with a biomolecule.
The thermodynamic stability of Ga(III) and Zr(IV) complexes in solution
has been measured using a combination of potentiometric and pH-dependent
UV–vis titrations, on the basis of metal–metal competition.
The Zr(IV)-H4L2 complex
is characterized by one of the highest formation constants reported
to date for a tetrahydroxamate zirconium chelate (log β = 45.9,
pZr = 37.0), although the complex-stability increase derived from
the introduction of the fourth hydroxamate binding unit is lower than
that predicted by theoretical calculations. Solution studies on Ga(III)
complexes revealed that H3L1 and H4L2 are stronger chelators in comparison to DFOB. The complex stability
obtained with the new ligands is also compared with that previously
reported for other hydroxamate ligands. In addition to increasing
the library of the thermodynamic stability data of Ga(III) and Zr(IV)
complexes, the present work allows new insights into Ga(III) and Zr(IV)
coordination chemistry and thermodynamics and broadens the selection
of available chelators for 68Ga(III) and 89Zr(IV). Solution equilibria studies on Ga(III)
and Zr(IV) complexes
with a series of tri- and tetrahydroxamate ligands are presented.
For this purpose, the rational design and synthesis of two cyclic
complexing agents bearing three and four hydroxamate chelating groups
was performed. The thermodynamic and speciation studies allow a discussion
of the structure−complex stability dependence. The Zr(IV)-tetrahydroxamate
complex is characterized by one of the highest formation constants
reported to date for a hydroxamate zirconium chelator.
Collapse
Affiliation(s)
- Yuliya Toporivska
- University of Wroclaw, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Andrzej Mular
- University of Wroclaw, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Karolina Piasta
- University of Wroclaw, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Małgorzata Ostrowska
- University of Wroclaw, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Davide Illuminati
- University of Ferrara, Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, 46 Via Luigi Borsari, 44121 Ferrara, Italy
| | - Andrea Baldi
- University of Ferrara, Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, 46 Via Luigi Borsari, 44121 Ferrara, Italy
| | - Valentina Albanese
- University of Ferrara, Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, 46 Via Luigi Borsari, 44121 Ferrara, Italy
| | - Salvatore Pacifico
- University of Ferrara, Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, 46 Via Luigi Borsari, 44121 Ferrara, Italy
| | - Igor O Fritsky
- Taras Shevchenko National University of Kyiv, Department of Chemistry, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Maurizio Remelli
- University of Ferrara, Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, 46 Via Luigi Borsari, 44121 Ferrara, Italy
| | - Remo Guerrini
- University of Ferrara, Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, 46 Via Luigi Borsari, 44121 Ferrara, Italy
| | | |
Collapse
|
6
|
Salerno EV, Kampf JW, Pecoraro VL, Mallah T. Magnetic properties of two Gd IIIFe III4 metallacrowns and strategies for optimizing the magnetocaloric effect of this topology. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00207d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two Gd3+ [12-MCFeIII(N)shi-4] metallacrowns are analyzed for magnetic properties, and calculations concerning the magnetic exchange parameters of this topology are considered.
Collapse
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry
- Willard H. Dow Laboratories
- University of Michigan
- Ann Arbor
- USA
| | - Jeff W. Kampf
- Department of Chemistry
- Willard H. Dow Laboratories
- University of Michigan
- Ann Arbor
- USA
| | - Vincent L. Pecoraro
- Department of Chemistry
- Willard H. Dow Laboratories
- University of Michigan
- Ann Arbor
- USA
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- CNRS
- Université Paris-Saclay
- 91405 Orsay Cedex
- France
| |
Collapse
|
7
|
Rojas-Poblete M, Rodríguez-Kessler PL, Guajardo Maturana R, Muñoz-Castro A. Coinage-metal pillarplexes hosts. Insights into host-guest interaction nature and luminescence quenching effects. Phys Chem Chem Phys 2021; 23:15917-15924. [PMID: 34086020 DOI: 10.1039/d1cp00849h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host-guest chemistry is a relevant issue in materials science, which encourages further development of versatile host structures. Here the particular features of coinage-metal pillarplexes are evaluated towards formation of host-guest aggregates by the inclusion of 1,8-diaminooctane, as characterized for [M8(LMe)2]4+ (M = Ag, and, Au). The obtained results denotes the main contribution from van der Waals type interaction (50%), followed by a contribution from orbital polarization and electrostatic nature (20% and 30%), involving both orbitalary and electrostatic terms. Throughout the different coinage-metal based hosts (M = Cu, Ag, and Au), a similar interaction energy is found given by the large contribution of the π-surface from the organic ligand backbone to both van de Waals and electrostatic interactions. This suggests that a similar host structure can be obtained for the lighter copper counterpart, retaining similar how-guest features. Moreoves, the [Au8(LMe)2]4+ host exhibits inherent luminescent properties, involving the shortening of Au(i)-Au(i) contacts at the excited state, which is partially avoided when the guest is incorporated, accounting for the observed quenching from titration experiments. This results encourages further exploration of coinage metal hosts in the formation of inclusion complexes.
Collapse
Affiliation(s)
- Macarena Rojas-Poblete
- Instituto de Ciencias Químicas Aplicadas, Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| | | | | | | |
Collapse
|