1
|
Serrano-Guarinos J, Jiménez-García A, Bautista D, González-Herrero P, Vivancos Á. Synthesis, Luminescence, and Electrochemistry of Tris-Chelate Platinum(IV) Complexes with Cyclometalated N-Heterocyclic Carbene Ligands and Aromatic Diimines. Inorg Chem 2024. [PMID: 39698802 DOI: 10.1021/acs.inorgchem.4c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Dicationic, C2-symmetrical, tris-chelate Pt(IV) complexes of general formula [Pt(trz)2(N∧N)](OTf)2, bearing two cyclometalated 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) ligands and one aromatic diimine [N∧N = 2,2'-bipyridine (bpy, 2), 4,4'-di-tert-butyl-2,2'-bipyridine (dbbpy, 3), 4,4'-dimethoxi-2,2'-bipyridine (dMeO-bpy, 4), 1,10-phenanthroline (phen, 5), 4,7-diphenyl-1,10-phenanthroline (bphen, 6), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 7), or 2,3-diphenylpyrazino[2,3-f][1,10]phenanthroline (dpprzphen, 8)] are obtained through chloride abstraction from [PtCl2(trz)2] (1) using AgOTf in the presence of the corresponding diimine. Complexes 2-4 show long-lived phosphorescence from 3LC excited states involving the diimine ligand, with quantum yields that reach 0.18 in solution and 0.58 in the solid matrix at room temperature for 3. Derivatives with more extended aromatic systems show dual phosphorescent/fluorescent emissions (5, 6) or mainly fluorescence (7, 8) in solution. Comparisons with similar complexes bearing cyclometalated 2-arylpyridines instead of aryl-N-heterocyclic carbenes indicate that the {Pt(trz)2} subunit is crucial to enable efficient emissions from diimine-centered excited states. It is also shown that the introduction of protective bulky substituents on the diimine, such as the tert-butyl groups in 3, is a key strategy to reach higher emission efficiencies. The new compounds represent rare examples of luminescent Pt(IV) complexes that show quasi-reversible one-electron reductions, indicating an unusually high redox stability.
Collapse
Affiliation(s)
- José Serrano-Guarinos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Adrián Jiménez-García
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
2
|
Roy J, Forzatti M, Arnal L, Martín A, Fuertes S, Tordera D, Sicilia V. Pyrazolate-Bridged NHC Cyclometalated [Pt 2] Complexes and [Pt 2Ag(PPh 3)] + Clusters in Electroluminescent Devices. Inorg Chem 2024; 63:7275-7285. [PMID: 38587101 DOI: 10.1021/acs.inorgchem.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The ionic transition metal complexes (iTMCs) [{Pt(C∧C*)(μ-Rpz)}2Ag(PPh3)]X (HC∧C* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazole-2-ylidene, X = ClO4/PF6; Rpz = pz 1a/2a, 4-Mepz 1b/2b, and 3,5-dppz 1c/2c) were prepared from the neutral [{Pt(C∧C*)(μ-Rpz)}2] (Rpz = pz A, 4-Mepz B, and 3,5-dppz C) and fully characterized. The "Ag(PPh3)" fragment is in between the two square-planar platinum units in an "open book" disposition and bonded through two Pt-Ag donor-acceptor bonds, as shown by X-ray diffraction (dPt-Ag ∼ 2.78 Å, 1a-1c). 195Pt{1H} and 31P{1H} NMR confirmed that these solid-state structures remain in solution. Photoluminescence studies and theoretical calculations on 1a, were performed. The diphenylpyrazolate derivatives show the highest photoluminescence quantum yield (PLQY) in the solid state. Therefore, 2c and its neutral precursor C were selected as active materials on light-emitting devices. OLEDs fabricated with C showed a turn-on voltage of 3.2 V, a luminance peak of 21,357 cd m-2 at 13 V, and a peak current efficiency of 28.8 cd A-1 (9.5% EQE). They showed a lifetime t50 of 15.7 h. OLEDs using 2c showed a maximum luminance of 114 cd m-2, while LECs exhibited a maximum luminance of 20 cd m-2 and a current efficiency of around 0.2 cd A-1, with a t50 value of 50 min.
Collapse
Affiliation(s)
- Jorge Roy
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Michele Forzatti
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltran, 2, Paterna 46980, Spain
| | - Lorenzo Arnal
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Antonio Martín
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Daniel Tordera
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltran, 2, Paterna 46980, Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Río Ebro, Edificio Torres Quevedo, Zaragoza 50018, Spain
| |
Collapse
|
3
|
Nguyen YH, Wu Y, Dang VQ, Jiang C, Teets TS. Combined Nucleophilic and Electrophilic Functionalization to Optimize Blue Phosphorescence in Cyclometalated Platinum Complexes. J Am Chem Soc 2024; 146:9224-9229. [PMID: 38517326 DOI: 10.1021/jacs.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Ligand-based functionalization strategies have emerged as powerful approaches to tune and optimize blue phosphorescence, which can involve nucleophilic addition to coordinated ligands or electrophilic functionalization via the coordination of exogenous Lewis acids. Whereas both have been used separately to enhance the photophysical properties of organometallic compounds with high-energy triplet states, in this work, we show that these two strategies can be used together on the same platform. Isocyanide-supported cyclometalated platinum compounds undergo nucleophilic addition with diethylamine to form a strong σ-donor acyclic diaminocarbene-supporting ligand. In a subsequent step, a cyanide ancillary ligand is converted into a more strongly π-acidic isocyanoborate via the coordination of a borane Lewis acid. Importantly, both of these ligand-based functionalization steps improve the quantum yields and lifetimes of the blue-phosphorescent complexes. This synergy results in complexes with photoluminescence quantum yields up to 0.40 for deep blue and 0.75 for sky blue regions and PL lifetimes on the order of 10-5 s.
Collapse
Affiliation(s)
- Yennie H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Yanyu Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
4
|
Barker M, Whittemore TJ, London HC, Sledesky JM, Harris EA, Smith Pellizzeri TM, McMillen CD, Wagenknecht PS. Design Strategies for Luminescent Titanocenes: Improving the Photoluminescence and Photostability of Arylethynyltitanocenes. Inorg Chem 2023; 62:17870-17882. [PMID: 37831503 PMCID: PMC10618925 DOI: 10.1021/acs.inorgchem.3c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/14/2023]
Abstract
Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 μs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
Collapse
Affiliation(s)
- Matilda Barker
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J. Whittemore
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Henry C. London
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jack M. Sledesky
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Elizabeth A. Harris
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Tiffany M. Smith Pellizzeri
- Department
of Chemistry and Biochemistry, Eastern Illinois
University, Charleston, Illinois 61920, United States
| | - Colin D. McMillen
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S. Wagenknecht
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
5
|
Shen Y, Kong X, Yang F, Bian HD, Cheng G, Cook TR, Zhang Y. Deep Blue Phosphorescence from Platinum Complexes Featuring Cyclometalated N-Pyridyl Carbazole Ligands with Monocarborane Clusters (CB 11H 12-). Inorg Chem 2022; 61:16707-16717. [PMID: 36205461 DOI: 10.1021/acs.inorgchem.2c02467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The utilization of deep blue phosphorescent materials in high-performance displays and solid-state lighting requires high quantum efficiencies and color purities. Here, we describe the preparation and luminescent properties of novel platinum triplet emitters featuring cyclometalated N-pyridyl-carbazole ligands functionalized with closo-monocarborane clusters [CB11H12]-. All reported complexes were fully characterized by using standard small molecule techniques (UV-vis, cyclic voltammetry, nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS)), and their solid-state structures were elucidated by X-ray diffraction. These platinum phosphors emit in the blue region of the visible wavelength spectrum in both the solid and solution states. Complex 4a exhibits the highest luminous efficiency at λem = 439 nm with a photoluminescent quantum yield (PLQY) of 60% by dispersing in a PMMA matrix. Electrochemical and computational studies of complexes 4a and 4b revealed that the blue phosphorescence originates mainly from intraligand 3π → π* (3ILCT) transitions with relatively small 3MLCT mixing. A deep-blue OLED containing 4a as the light-emitting dopant was successfully fabricated using a solution-processed method, and the device exhibited blue photoluminescence with CIE coordinates of (0.17, 0.15) and a maximum external quantum efficiency (EQEmax) value of 6.2%. This article represents the pioneering study of a deep blue PhOLED using a Pt complex bearing a closo-monocarborane anion substituent, providing a new avenue into the preparation of novel triplet emitters based on boron-rich cluster anions.
Collapse
Affiliation(s)
- Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Fengjie Yang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - He-Dong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| |
Collapse
|
6
|
Gutierrez Suburu ME, Maisuls I, Kösters J, Strassert CA. Room-temperature luminescence from Pd(II) and Pt(II) complexes: from mechanochromic crystals to flexible polymer matrices. Dalton Trans 2022; 51:13342-13350. [PMID: 35983882 DOI: 10.1039/d2dt01693a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Pd(II) (PdLOMe, PdLOHex) and Pt(II) (PtLOMe, PtLOHex) complexes bearing tetradentate ligands as dianionic luminophores were synthesized. Hence, the cyclometallating chelators were alternatively decorated with two n-hexyloxy (LOHex) or two methoxy (LOMe) moieties to promote crystallization and processability. The new compounds were unambiguously characterized by means of multiple NMR spectroscopies and mass spectrometry as well as by single crystal X-ray diffractometric analysis (PtLOMe and PdLOMe). Steady state and time-resolved photoluminescence spectroscopic studies were carried out in crystalline phases, in fluid solutions at room temperature, in frozen glassy matrices at 77 K and in a flexible polymeric matrix (PMMA). PtLOMe presents an intriguing mechanochromism resulting from the responsive metal-metal interactions involving adjacent monomeric units. Incorporation of the Pd(II) complexes into the polymeric matrix boosts their photophysical properties by stiffening of the coordination environment while reducing non-radiative deactivation pathways mediated by dissociative metal-centred states, which also become thermally inaccessible at 77 K.
Collapse
Affiliation(s)
- Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany.
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| |
Collapse
|
7
|
Arnal L, Escudero D, Fuertes S, Martin A, Sicilia V. High-Valent Pyrazolate-Bridged Platinum Complexes: A Joint Experimental and Theoretical Study. Inorg Chem 2022; 61:12559-12569. [PMID: 35925811 PMCID: PMC9387385 DOI: 10.1021/acs.inorgchem.2c01441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Complexes [{Pt(C^C*)(μ-pz)}2] (HC^C*A = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene 1a, HC^C*B = 1-phenyl-3-methyl-1H-imidazol-2-ylidene 1b) react with methyl
iodide (MeI)
at room temperature in the dark to give compounds [{PtIV(C^C*)Me(μ-pz)}2(μ-I)]I (C^C*A2a, C^C*B2b). The reaction of 1a with benzyl bromide (BnBr) in the same conditions afforded
[Br(C^C*A)PtIII(μ-pz)2PtIII(C^C*A)Bn] (5a), which by heating
in BnBr(l) became [{PtIV(C^C*A)Bn(μ-pz)}2(μ-Br)]Br (6a). Experimental investigations
and density functional theory (DFT) calculations on the mechanisms
of these reactions from 1a revealed that they follow
a SN2 pathway in the two steps of the double oxidative
addition (OA). Based on the DFT investigations, species such as [(C^C*A)PtIII(μ-pz)2PtIII(C^C*A)R]X (RX = MeI Int-Me, BnBr Int-Bn) and [(C^C*A)PtII(μ-pz)2PtIV(C^C*A)(R)X] (RX = MeI Int′-Me, BnBr Int′-Bn) were proposed as intermediates
for the first and the second OA reactions, respectively. In order
to put the mechanisms on firmer grounds, Int-Me was prepared
as [(C^C*A)PtIII(μ-pz)2PtIII(C^C*A)Me]BF4 (3a′) and used to get [I(C^C*A)PtIII(μ-pz)2PtIII(C^C*A)Me](4a), [(C^C*A)PtII(μ-pz)2PtIV(C^C*A)(Me)I](Int′-Me), and [{PtIV(C^C*)Me(μ-pz)}2(μ-I)]BF4 (2a′). The single-crystal X-ray structures of 2a, 2b, 3a′, and 5a along with the mono- and bi-dimensional 1H and 195Pt{1H} NMR spectra of all the named species allowed us
to compare structural and spectroscopic data for high-valent complexes
with the same core [{Pt(C^C*)(μ-pz)}2] but different
oxidation states. Experimental
and theoretical
investigations on the mechanisms
of OA reactions of MeI and BnBr to [{PtII(C^C*)(μ-pz)}2] allowed us to get high-valent pyrazolate-bridged platinum
compounds: Pt2(III,III), Pt2(II,IV), and Pt2(IV,IV). Their stability and structural and spectroscopic
features have been compared.
Collapse
Affiliation(s)
- Lorenzo Arnal
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f - box 2404, 3001 Leuven, Belgium
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Antonio Martin
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Rio Ebro, Edificio Torres Quevedo, 50018 Zaragoza, Spain
| |
Collapse
|
8
|
Vivancos Á, Bautista D, González-Herrero P. Phosphorescent Tris-cyclometalated Pt(IV) Complexes with Mesoionic N-Heterocyclic Carbene and 2-Arylpyridine Ligands. Inorg Chem 2022; 61:12033-12042. [PMID: 35860839 PMCID: PMC9377419 DOI: 10.1021/acs.inorgchem.2c02039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structure, photophysical properties, and electrochemistry of the first series of Pt(IV) tris-chelates bearing cyclometalated aryl-NHC ligands are reported. The complexes have the general formula [Pt(trz)2(C∧N)]+, combining two units of the cyclometalated, mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) with a cyclometalated 2-arylpyridine [C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy), 2-phenylpyridine (ppy), 2-(p-tolyl)pyridine (tpy), 2-(2-thienyl)pyridine (thpy), 2-(9,9-dimethylfluoren-2-yl)pyridine (flpy)], and presenting a mer arrangement or metalated aryls. They exhibit a significant photostability under UV irradiation and long-lived phosphorescence in the blue to yellow color range, arising from 3LC excited states involving the C∧N ligands, with quantum yields of up to 0.34 in fluid solution and 0.77 in the rigid matrix at 298 K. The time-dependent density functional theory (TD-DFT) calculations reveal that nonemissive, deactivating excited states of ligand-to-metal charge-transfer (LMCT) character are pushed to high energies as a consequence of the strong σ-donating ability of the carbenic moieties, making the Pt(trz)2 subunit an essential structural component that enables efficient emissions from the chromophoric C∧N ligands, with potential application for the development of different Pt(IV) emitters with tunable properties.
Collapse
Affiliation(s)
- Ángela Vivancos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
9
|
McCarthy JS, McCormick MJ, Zimmerman JH, Hambrick HR, Thomas WM, McMillen CD, Wagenknecht PS. Role of the Trifluoropropynyl Ligand in Blue-Shifting Charge-Transfer States in Emissive Pt Diimine Complexes and an Investigation into the PMMA-Imposed Rigidoluminescence and Rigidochromism. Inorg Chem 2022; 61:11366-11376. [PMID: 35820113 DOI: 10.1021/acs.inorgchem.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Square-planar PtII complexes are of interest as dopants for the emissive layer of organic light-emitting diodes. Herein, the photophysics of three Pt bipyridyl complexes with the strongly e- withdrawing, high-field, 3,3,3-trifluoropropynyl ligand has been investigated. One complex, (phbpy)PtC2CF3 (phbpy = 6-phenyl-2,2'-dipyridyl), has also been characterized by single-crystal X-ray diffraction. All complexes reported are emissive in both RT CH2Cl2 solution (ΦPL = 0.007 to 0.027) and PMMA film (ΦPL = 0.25 to 0.42). The trifluoropropynyl ligand elevates the energy of the MLCT and LL'CT states above that of the IL π-π* state, resulting in IL emission in all cases. The emission energies of the trifluoropropynyl compounds are also blue-shifted relative to the analogous pentafluorophenylethynyl compounds, suggesting that the trifluoropropynyl ligand is one of the most electron-withdrawing alkynyl ligands. Rate constants for radiative and nonradiative deactivation were determined from experimentally determined values of ΦPL and excited-state lifetimes in both solution and PMMA films. The increase in ΦPL upon incorporation into PMMA film (rigidoluminescence) results from a decrease in the rate constant for non-radiative relaxation. Experimental activation energies for excited-state decay in combination with TDDFT are consistent with the rigidoluminescence resulting from an increase in the energy of the non-emissive triplet metal-centered state. Two of the complexes investigated, (Ph2bpy)Pt(C2CF3)2 and (t-Bu2bpy)Pt(C2CF3)2, where t-Bu2bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl and Ph2bpy = 4,4'-diphenyl-2,2'-dipyridyl, exhibit concentration-dependent excimer emission (orange) along with monomer emission (blue), enabling fine-tuning of the emission color. However, excimer emission was absent in cured PMMA films up to the solubility limit for solution processing of (Ph2bpy)Pt(C2CF3)2 in CH2Cl2, demonstrating the diffusional nature of excimer formation.
Collapse
Affiliation(s)
- Jackson S McCarthy
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Mary Jo McCormick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - John H Zimmerman
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - H Rhodes Hambrick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Wilson M Thomas
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
10
|
Zhang H, Liu C, Zhang J, Du CX, Zhang B. Highly Emissive Platinum(II) Complexes Bearing Bulky Phenyltriazolate Ligands: Synthesis, Structure, and Photophysics. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chunmei Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chen-xia Du
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Hamidizadeh P, Babadi Aghakhanpour R, Chamyani S, Paziresh S, Shahsavari HR, Nabavizadeh SM. Fine-Tuning of Luminescence Properties of Cyclometalated Platinum(II) Complexes via Aminopyridine Derivatives. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peyman Hamidizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Reza Babadi Aghakhanpour
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Sareh Paziresh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
12
|
Singh K, Siddiqui I, Sridharan V, Kumar Yadav RA, Jou JH, Adhikari D. Aggregation-Induced Enhanced Emission-Active Zinc(II) β-Diketiminate Complexes Enabling High-Performance Solution-Processable OLEDs. Inorg Chem 2021; 60:19128-19135. [PMID: 34865472 DOI: 10.1021/acs.inorgchem.1c02926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Earth-abundant and cheaper zinc-based organometallic molecules as luminophores are drawing significant research attention for solid-state lighting devices. In this paper, we report two air-stable zinc complexes, where the zinc is coordinated to two sterically encumbered β-diketiminate ligands in a tetrahedral geometry. In such a geometry, eight phenyl/aryl rings from the ligand backbones are oriented in a propeller shape, augmenting the restricted rotation of the putative rings. Such an architecture harnesses aggregation-induced emission behavior with an excellent solid-state emission property. The rigidity of these molecules reduces the possibility of non-radiative transitions and makes them excellent fluorescence emitters. Both molecules exhibit electroluminescence (EL) in the yellowish-green region of the visible spectrum. We have utilized these molecules as emitters to fabricate multilayered organic light-emitting diode (OLED) devices. The emitter Zn-I in host m-MTDATA exhibits EL with a maximum external quantum efficiency of 4.4%. Among the handful of zinc-based OLEDs, the performance of this emitter is very commendable with power and current efficacies of 15.2 lm W-1 and 12.1 cd A-1, respectively, along with a brightness of 2426 cd m-2.
Collapse
Affiliation(s)
- Kirti Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Vidhyalakshmi Sridharan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Rohit Ashok Kumar Yadav
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
13
|
Shahsavari HR, Chamyani S, Hu J, Aghakhanpour RB, Rheingold AL, Paziresh S, Rahal D, Tsuji M, Momand B, Beyzavi H. The Utilization of
Para
‐Substituted Triphenylphosphine Derivatives to Synthesize Highly Emissive Cyclometalated Platinum(II) Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Samira Chamyani
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Jiyun Hu
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Reza Babadi Aghakhanpour
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Arnold L. Rheingold
- Department of Chemistry University of California San Diego, La Jolla California 92093 United States
| | - Sareh Paziresh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Dania Rahal
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Miu Tsuji
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Bilal Momand
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| |
Collapse
|
14
|
Coffey B, Clough L, Bartkus DD, McClellan IC, Greenberg MW, LaFratta CN, Tanski JM, Anderson CM. Photophysical Properties of Cyclometalated Platinum(II) Diphosphine Compounds in the Solid State and in PMMA Films. ACS OMEGA 2021; 6:28316-28325. [PMID: 34723028 PMCID: PMC8552474 DOI: 10.1021/acsomega.1c04509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
Platinum(II) compounds were synthesized with both chelate cyclometalated ligands and chelate diphosphine ligands. The cyclometalated ligands include phenylpyridine and a benzothiophene-containing ligand. The three new benzothiophene compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HR-MS), and photophysical measurements. In the case of one compound, L1-DPPM, the structure was determined by single crystal X-ray diffraction. The structural coherence of the noncrystalline emissive solid state was measured by X-ray total scattering real space pair distribution function analysis. Quantum yield values of all of the platinum compounds measured in the solid state and in PMMA films were much greater than in solution.
Collapse
Affiliation(s)
- Belle Coffey
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Lily Clough
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Ian C. McClellan
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Matthew W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
15
|
Sicilia V, Arnal L, Escudero D, Fuertes S, Martin A. Chameleonic Photo- and Mechanoluminescence in Pyrazolate-Bridged NHC Cyclometalated Platinum Complexes. Inorg Chem 2021; 60:12274-12284. [PMID: 34339189 PMCID: PMC8892954 DOI: 10.1021/acs.inorgchem.1c01470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DFT investigations on the ground (GS) and the first triplet (T1) excited state potential energy surfaces (PES) were performed on a new series of platinum-butterfly complexes, [{Pt(C∧C*)(μ-Rpz)}2] (Rpz: pz, 1; 4-Mepz, 2; 3,5-dmpz, 3; 3,5-dppz, 4), containing a cyclometalated NHC in their wings. The geometries of two close-lying local minima corresponding to butterfly spread conformers, 1s-4s, and butterfly folded ones, 1f-4f, with long and short Pt-Pt separations, respectively, were optimized in the GS and T1 PES. A comparison of the GS and T1 energy profiles revealed that an opposite trend is obtained in the relative stability of folded and spread conformers, the latter being more stabilized in their GS. Small ΔG (s/f) along with small-energy barriers in the GS support the coexistence of both kinds of conformers, which influence the photo- and mechanoluminescence of these complexes. In 5 wt % doped PMMA films in the air, these complexes exhibit intense sky-blue emissions (PLQY: 72.0-85.9%) upon excitation at λ ≤ 380 nm arising from 3IL/MLCT excited states, corresponding to the predominant 1s-4s conformers. Upon excitation at longer wavelengths (up to 450 nm), the minor 1f-4f conformers afford a blue emission as well, with PLQY still significant (40%-60%). In the solid state, the as-prepared powder of 4 exhibits a greenish-blue emission with QY ∼ 29%, mainly due to 3IL/3MLCT excited states of butterfly spread molecules, 4s. Mechanical grinding resulted in an enhanced and yellowish-green emission (QY ∼ 51%) due to the 3MMLCT excited states of butterfly folded molecules, 4f, in such a way that the mechanoluminescence has been associated with an intramolecular structural change induced by mechanical grinding.
Collapse
Affiliation(s)
- Violeta Sicilia
- Departamento de Quimica Inorganica, Escuela de Ingenieria y Arquitectura de Zaragoza, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Campus Rio Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| | - Lorenzo Arnal
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f - box 2404, 3001 Leuven, Belgium
| | - Sara Fuertes
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Antonio Martin
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
16
|
Pinter P, Soellner J, Strassner T. Metallophilic Interactions in Bimetallic Cyclometalated Platinum(II) N‐Heterocyclic Carbene Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Piermaria Pinter
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| | - Johannes Soellner
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| | - Thomas Strassner
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| |
Collapse
|
17
|
Vivancos Á, Jiménez-García A, Bautista D, González-Herrero P. Strongly Luminescent Pt(IV) Complexes with a Mesoionic N-Heterocyclic Carbene Ligand: Tuning Their Photophysical Properties. Inorg Chem 2021; 60:7900-7913. [PMID: 33970000 PMCID: PMC8893362 DOI: 10.1021/acs.inorgchem.1c00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/18/2022]
Abstract
The synthesis, electrochemistry, and photophysical properties of a series of bis-cyclometalated Pt(IV) complexes that combine the mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) with either 1-phenylpyrazole or 2-arylpyridine (C∧N) are reported. The complexes (OC-6-54)-[PtCl2(C∧N)(trz)] bearing cyclometalating 2-arylpyridines present phosphorescent emissions in the blue to yellow color range, which essentially arise from 3LC(C∧N) states, and reach quantum yields of ca. 0.3 in fluid solutions and almost unity in poly(methyl methacrylate) (PMMA) matrices at 298 K, thus representing a class of strong emitters with tunable properties. A systematic comparison with the homologous C2-symmetrical species (OC-6-33)-[PtCl2(C∧N)2], which contains two equal 2-arylpyridine ligands, shows that the introduction of a trz ligand leads to significantly lower nonradiative decay rates and higher quantum efficiencies. Computational calculations substantiate the effect of the carbene ligand, which raises the energy of dσ* orbitals in these derivatives and results in the higher energies of nonemissive deactivating 3LMCT states. In contrast, the isomers (OC-6-42)-[PtCl2(C∧N)(trz)] are not luminescent because they present a 3LMCT state as the lowest triplet.
Collapse
Affiliation(s)
- Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, 30100 Murcia, Spain
| | - Adrián Jiménez-García
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, 30100 Murcia, Spain
| |
Collapse
|
18
|
Martínez-Junquera M, Lalinde E, Moreno MT, Alfaro-Arnedo E, López IP, Larráyoz IM, Pichel JG. Luminescent cyclometalated platinum(ii) complexes with acyclic diaminocarbene ligands: structural, photophysical and biological properties. Dalton Trans 2021; 50:4539-4554. [PMID: 33729268 DOI: 10.1039/d1dt00480h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Four new cyclometalated Pt(ii) complexes bearing acyclic diaminocarbene (ADC) ligands, [Pt(C^N)Cl{C(NHXyl)(NHR)}] [C^N = 2,6-difluorophenylpyridine (dfppy), phenylquinoline (pq); R = Pr 3a, 4a, CH2Ph 3b, 4b], were prepared by the nucleophilic attack on the isocyanide [Pt(C^N)Cl(CNXyl)] (C^N = dfppy 1, pq 2) by the corresponding amine RNH2 (R = Pr, CH2Ph). Complexes 3 show in their 1H NMR spectra in CDCl3 a notable concentration dependence, with a clear variation of the δH (NHXyl) signal, suggesting an assembling process implying donor-acceptor NHXylCl bonding, also supported by 1D-PGSE (Pulse Field Gradient Spin Echo) and 2D-DOSY (Diffusion Ordered Spectroscopy) NMR experiments in solution and X-ray diffraction studies. The intermolecular interactions in compounds 3a and 3b were studied by using Hirshfeld surface analysis and Non-Covalent Interaction (NCI) methods on their X-ray structures. Their photophysical properties were investigated by absorption and emission spectroscopies and also by TD-DFT calculations performed on 3a and 4b. These complexes show green (3) or orange (4) phosphorescence, attributed to a mixed 3IL/3MLCT excited state. The carbene ligand does not affect the emission maxima but it produces an increase of the quantum yields in relation to the isocyanide in the precursors. In fluid solutions, the emission is not concentration-dependent, but the complexes may show aggregation induced emission as detailed for complexes 3a and 4a. In addition, cytotoxicity studies in the human cell lines A549 (lung carcinoma) and HeLa (cervix carcinoma) showed good activity for these complexes and 3a, 3b and 4a exhibit a strong effect on DNA electrophoretic mobility. To the best of our knowledge, compounds 3 and 4 represent the first examples of cycloplatinated complexes bearing acyclic diamino carbenes with antiproliferative properties.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Solid-state spectroscopic properties of dinuclear cyclometalated Pt(II) complexes with different bridging ligands and anions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Shahsavari HR, Paziresh S. The impact of cyclometalated and phosphine ligands on the luminescence properties of cycloplatinated( ii) complexes: photophysical and theoretical investigations. NEW J CHEM 2021. [DOI: 10.1039/d1nj04242d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of various C^N cyclometalated and phosphine ligands on the photophysical properties of cycloplatinated(ii) complexes were investigated experimentally and theoretically.
Collapse
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Sareh Paziresh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
21
|
Ujjval R, Deepa M, Thomas JM, Sivasankar C, Thirupathi N. Unusual [Pt{κ 2( C, N)}] + → [Pt{κ 2( N, N)}] + Coordination Mode Flip of the Guanidinate(1−) Ligand in Cationic N, N′, N″-Tris(3,5-xylyl)guanidinatoplatinum(II) Bis(phosphine) Complexes. Syntheses, Structural and Theoretical Studies. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rishabh Ujjval
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Masilamani Deepa
- Postgraduate and Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore 632 002, Tamil Nadu, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), R. V. Nagar, Kalapet, Pondicherry 605 014, India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), R. V. Nagar, Kalapet, Pondicherry 605 014, India
| | | |
Collapse
|
22
|
Jaime S, Arnal L, Sicilia V, Fuertes S. Cyclometalated NHCs Pt(II) Compounds with Chelating P^P and S^S Ligands: From Blue to White Luminescence. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sara Jaime
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Lorenzo Arnal
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Río
Ebro, Edificio Torres Quevedo, 50018 Zaragoza, Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|