1
|
Saha B, Pal C, Malik H, Gopakumar TG, Rath SP. Conformational Switching of a Nano-Size Urea-Bridged Zn(II)Porphyrin Dimer by External Stimuli. Chemistry 2024; 30:e202402536. [PMID: 39250167 DOI: 10.1002/chem.202402536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
For the first time, explicit stabilization of all the three conformers, viz. (cis,cis), (cis,trans) and (trans,trans), of a 'nano-sized' highly-flexible urea-bridged Zn(II)porphyrin dimer have been achieved via careful manipulations of external stimuli such as solvent dielectrics, temperature, anionic interactions, axial ligation and surface-induced stabilization. The conformers differ widely in their structures, chemical and photophysical properties and thus have vast potential applicability. X-ray structural characterizations have been reported for the (cis,cis) and (cis,trans)-conformers. While (cis,cis) conformer stabilized exclusively in dichloromethane, more polar solvents resulted in the stabilization of (cis,trans) and (trans,trans)-conformers. Low temperature promotes the stabilization of (cis,trans)-conformer while rise in temperature facilitates flipping to the (cis,cis) one. Significantly, exclusive stabilization of the (trans,trans)-isomer has been illustrated using acetate anion which facilitates H-bonding with the two amide linkages of the urea spacer. Remarkably, HOPG surface facilitates stabilization of the energetically challenging (trans,trans)-conformer via CH⋅⋅⋅π and π⋅⋅⋅π interactions with the solid surface to the porphyrinic cores. DFT calculations demonstrate that the relative stability of the conformers can be modulated upon slight external perturbations as also observed in the experiment. Several factors contributing towards the conformational landscape for the highly flexible urea-bridged porphyrin dimers have been mapped.
Collapse
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chandrani Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Himani Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
2
|
Biswas S, Kelly OR, Twamley B, McDonald AR. A Structural and Functional Mimic of P680 . Angew Chem Int Ed Engl 2024:e202415688. [PMID: 39440919 DOI: 10.1002/anie.202415688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
One or multiple chlorophyll a molecules are employed in the reaction center of photosystem II's main electron donor (defined as P680). We have a poor understanding of how the reaction center facilitates water oxidation in photosystem II and the roles that mono- and/or multimeric chlorophyll groups play when P680 oxidizes a neighboring tyrosine in order to drive water oxidation at the oxygen evolving complex. We have prepared a dimeric MgII-porphyrin complex [Mg2(BTPP)] (1, H4-BTPP=1,2-bis-(10,15,20-triphenylporphyrin-5-yl)-benzene) as a structural and functional mimic of the dimeric core of P680. 1 was oxidized by one-electron to the corresponding π-cation radical complex 2. The radical cation was characterized by UV/Vis-NIR, FT-IR, and EPR spectroscopic techniques. 2 was shown to be reactive towards phenols to give the corresponding phenoxyl radicals, mimicking the reactivity of the P680 cation radical which oxidizes tyrosine to tyrosyl radical. Critically, the dimeric π-cation radical showed markedly higher rates of proton coupled electron transfer oxidation (PCET) of phenols when compared to its monomeric counterpart [Mg(TPP)] (TPP=5,10,15,20-tetraphenylporphyrin). Our findings demonstrate that MgII-porphyrin complexes are reliable mimics of photosynthetic PCET processes and suggest that photosynthetic reaction centers with multiple π-conjugated complexes likely lower the barrier to PCET oxidation by π-cation radical species.
Collapse
Affiliation(s)
- Sachidulal Biswas
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin, Dupin 2, Ireland
| | - Oscar Reid Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin, Dupin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin, Dupin 2, Ireland
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin, Dupin 2, Ireland
| |
Collapse
|
3
|
Dhamija A, Chandel D, Rath SP. Modulation of supramolecular chirality by stepwise axial coordination in a nano-size trizinc(ii)porphyrin trimer. Chem Sci 2023; 14:6032-6038. [PMID: 37293642 PMCID: PMC10246700 DOI: 10.1039/d3sc00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Herein, we report a chiral guest's triggered spring-like contraction and extension motions coupled with unidirectional twisting in a novel flexible and 'nano-size' achiral trizinc(ii)porphyrin trimer host upon step-wise formation of 1 : 1, 1 : 2, and 1 : 4 host-guest supramolecular complexes based on the stoichiometry of the diamine guests for the first time. During these processes, porphyrin CD responses have been induced, inverted, and amplified, and reduced, respectively, in a single molecular framework due to the change in the interporphyrin interactions and helicity. Also, the sign of the CD couplets is just the opposite between R and S substrates which suggests that the chirality is dictated solely by the stereographic projection of the chiral center. Interestingly, the long-range electronic communications between the three porphyrin rings generate trisignate CD signals that provide further information about molecular structures.
Collapse
Affiliation(s)
- Avinash Dhamija
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| |
Collapse
|
4
|
Chandel D, Pal C, Saha B, Asif Ikbal S, Rath SP. Induction and rationalization of supramolecular chirality in a highly flexible Zn(II)porphyrin dimer: structural, spectroscopic and theoretical investigations. Dalton Trans 2022; 51:14125-14137. [PMID: 36043507 DOI: 10.1039/d2dt01745h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly flexible pyrrole-bridged Zn(II)porphyrin dimer has been successfully utilized as an efficient host which enables an accurate determination of the absolute configuration directly for a large number of chiral amino alcohols and 1,2-diols. The addition of substrates resulted in the formation of 1 : 1 sandwich complexes which, after the addition of excess substrates, produced 1 : 2 host-guest complexes. In principle, the 1 : 2 host-guest complexes can be stabilized in three possible conformations, viz. exo-exo, exo-endo, and endo-endo based on how a substrate binds to the metal. The endo-endo conformation is stabilized by two strong interligand H-bonds [O-H⋯O(H)] between encapsulated diols which thereby interlock the stereochemistry. In the absence of such interligand H-bonding interactions, exo-endo binding is preferred as it is indeed observed for amino alcohols which show weaker CD couplets due to the free movement of substrates. The sandwich complexes with amino alcohols show a more intense CD couplet compared to the diols due to the stronger binding of the amine functionality (-NH2) towards a Zn-atom over an alcoholic moiety (-OH). The CD amplitude showed linear dependence with a binding constant for the 1 : 1 sandwich complex upon varying the substrates. Spectroscopic investigations, single crystal X-ray structure determination of four such host-guest complexes and DFT studies have enabled us to rationalize systematically the origin of optical activity unambiguously in the 1 : 1 and 1 : 2 host-guest complexes, which lead to an absolute stereochemical determination of a large number of chiral substrates. The larger vertical and horizontal flexibility of a diethyl pyrrole spacer induces stronger binding of the substrates to form the 1 : 1 complex with a much larger torsional angle along with intense CD couplets. In contrast, a rigid dibenzothiophene-bridged tweezer, due to its limited horizontal and vertical flexibility, facilitates 1 : 2 complexation more as compared to the highly flexible pyrrole-bridged host which results in stronger binding of the substrate with the intense CD couplet for the former.
Collapse
Affiliation(s)
- Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Chandrani Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sk Asif Ikbal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
5
|
Saha B, Chandel D, Rath SP. Hydrogen-Bonding Interactions Trigger Induction of Chirality via Formation of a Cyclic Dimer. Inorg Chem 2022; 61:2154-2166. [PMID: 35040641 DOI: 10.1021/acs.inorgchem.1c03362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rationalization for the chirality transfer mechanism in the supramolecular host-guest assemblies of an achiral Zn(II) porphyrin dimer (host) and a series of chiral diamines and diamino esters (substrates) via cyclic dimer formation has been reported for the first time. Stepwise formations of 2:2 host-guest cyclic dimers and 1:2 host-guest monomeric complexes have been observed via intermolecular assembling and disassembling processes. A large bisignate CD couplet was observed for the cyclic dimer, whereas the monomeric complexes exhibited negligible CD intensity. Crystallographic characterizations demonstrate that the strong intermolecular H bonding in cyclic dimers is responsible for their stability over the linear chain, which thereby display high-intensity bisignate CD couplets. In order to minimize the steric crowding within the host-guest assembly, the cyclic dimer switches its helicity toward the conformer having less steric hindrance. The cyclic scaffold is oriented according to the pre-existing chirality of the substrate in both the solid and solution phases: the substrates having R chirality display a negative CD couplet, whereas the substrates with S chirality display a positive couplet. Opposite signs for the CD couplets between R and S substrates suggest that the stereographic projection at the chiral centers solely dictates the overall helicity of the cyclic dimer. DFT studies further support the experimental observations.
Collapse
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Molecular structure and DFT calculations of aqua(5,10,15,20-tetrakis[4-(benzoyloxy)phenyl] porphyrinato)magnesium-dioxane. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Chandel D, Saha B, Asif Ikbal S, Rath SP. Design and control of axial binding with flexible Zn(II) porphyrin dimer: Building-up novel polymer with exo–endo binding. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pyrrole-bridged Zn(II) porphyrin dimer, Zn2DEP, has been utilized as an efficient tweezer host for the binding of guest (substrate) inside the cavity due to its large vertical flexibility. Aromatic monodentate substrate binds in an exo−endofashion to form a discrete monomeric complex while it converts to anexo−exo upon increasing the bulk of the guest. Shorter bidentate guest, on the other hand, forms 1:1 sandwich complex. In contrast, a longer bidentate guest binds in an exo−endo fashion but to form a polymeric structure. The complexes have been isolated in the solid state and structurally characterized while their complexation process in solution has been monitored spectroscopically. We also provide here a comprehensive account of the substrate binding ability of flexible Zn2DEP towards preferential formation of discrete monomeric exo–endo, exo–exo and sandwich complexes as well as 1D polymer just upon varying the size and type of axial guests. This work can contribute towards the rational design of receptors as highly efficient probes for molecular recognition and chirality sensing devices.
Collapse
Affiliation(s)
- Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, INDIA
| | - Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, INDIA
| | - Sk. Asif Ikbal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, INDIA
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, INDIA
| |
Collapse
|
8
|
Dhamija A, Mondal P, Saha B, Rath SP. Induction, control, and rationalization of supramolecular chirogenesis using metalloporphyrin tweezers: a structure-function correlation. Dalton Trans 2021; 49:10679-10700. [PMID: 32672295 DOI: 10.1039/d0dt01874k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supramolecular chirogenesis is one of the most rudimentary topics in the interdisciplinary sciences and essentially deals with various natural processes and innovative modern technologies. A comprehensive and rigorous understanding of such phenomenon is necessary to have a clear insight into the fundamental mechanisms and the various controlling factors, which would eventually lead to a range of practical applications of chiral supramolecular science. Metalloporphyrin tweezers have been extensively employed for such chirogenic processes due to their exciting physicochemical and tunable spectral properties, large stabilities, easily available synthetic protocols, and excellent abilities to form molecular assemblies. During the last few decades, various metalloporphyrin tweezers have been developed and considerably utilized by several research groups for assigning the absolute configuration to a variety of chiral diamines, conjugates of primary and secondary amines, amino alcohols, secondary alcohols, α-chiral carboxylic acids, etc. Our group has been at the forefront in trying to establish the structure-property correlation in this important area of interdisciplinary research. A brief account of our systematic investigation for understanding the underpinning mechanism of chirality induction and control at the molecular level over the last few years is presented in this Perspective article. The comprehensive understanding of such mechanistic details will be helpful in understanding various natural processes and designing modern technologies for various chirogenic functions in the fields of molecular sensors, nanotechnology, and supramolecular chemistry.
Collapse
Affiliation(s)
- Avinash Dhamija
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Pritam Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
9
|
Lu W, Gong L, Su C, Wang Q, Ling Q, Wang P, Qi D, Bian Y. Intermolecular Chirality Modulation of Binaphthalene-Bridged Bisporphyrins With Chiral Diamines. Front Chem 2021; 8:611257. [PMID: 33659235 PMCID: PMC7919525 DOI: 10.3389/fchem.2020.611257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
A new pair of 2,2ʹ-diamino-1,1ʹ-binaphthyl linked porphyrin dimers, (R)-/(S)-H, were synthesized to study their supramolecular interactions with a pair of chiral diamines ((R)-/(S)-PPDA) by using UV-Vis absorption, fluorescence and NMR titrations. The spectroscopic titrations indicated that sandwich-type 1:1 complexes were formed at low guest concentration and then transformed to 1:2 open complexes at high guest concentration. The supramolecular interactions afforded sensitive circular dichroism responses, and the CD signs of the 1:1 complexes are decided by the stereostructure of chiral diamine guests. Moreover, due to the shortened linking units, (R)-/(S)-H show more sensitive and predicable CD response than the previously reported hosts (R)-/(S)-H1 and this can be reasonably explained by DFT molecular modeling. The present results suggest (R)-/(S)-H are promising for chiral optical sensing.
Collapse
Affiliation(s)
- Wenxin Lu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.,Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Lei Gong
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Chaorui Su
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Qibao Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qing Ling
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Peng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
10
|
Pandey AK, Usman M, Rath SP. Hg···Hg···Hg Interaction Stabilizes Unusual Trinuclear Double Sandwich Structure of Mercury(II) Porphyrins. Inorg Chem 2020; 59:12988-12993. [DOI: 10.1021/acs.inorgchem.0c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anjani Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
11
|
Saha B, Ikbal SA, Rath SP. Complexation of Chiral Zinc(II)Porphyrin Tweezer with Chiral Guests: Control, Discrimination and Rationalization of Supramolecular Chirality. Inorg Chem 2020; 59:7795-7809. [DOI: 10.1021/acs.inorgchem.0c00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sk Asif Ikbal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|