1
|
Cesari C, Bortoluzzi M, Funaioli T, Femoni C, Iapalucci MC, Zacchini S. Highly Reduced Ruthenium Carbide Carbonyl Clusters: Synthesis, Molecular Structure, Reactivity, Electrochemistry, and Computational Investigation of [Ru 6C(CO) 15] 4. Inorg Chem 2023; 62:14590-14603. [PMID: 37646082 PMCID: PMC10498495 DOI: 10.1021/acs.inorgchem.3c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 09/01/2023]
Abstract
The reaction of [Ru6C(CO)16]2- (1) with NaOH in DMSO resulted in the formation of a highly reduced [Ru6C(CO)15]4- (2), which was readily protonated by acids, such as HBF4·Et2O, to [HRu6C(CO)15]3- (3). Oxidation of 2 with [Cp2Fe][PF6] or [C7H7][BF4] in CH3CN resulted in [Ru6C(CO)15(CH3CN)]2- (5), which was quantitatively converted into 1 after exposure to CO atmosphere. The reaction of 2 with a mild methylating agent such as CH3,I afforded the purported [Ru6C(CO)14(COCH3)]3- (6). By employing a stronger reagent, that is, CF3SO3CH3, a mixture of [HRu6C(CO)16]- (4), [H3Ru6C(CO)15]- (7), and [Ru6C(CO)15(CH3CNCH3)]- (8) was obtained. The molecular structures of 2-5, 7, and 8 were determined by single-crystal X-ray diffraction as their [NEt4]4[2]·CH3CN, [NEt4]3[3], [NEt4][4], [NEt4]2[5], [NEt4][7], and [NEt4][8]·solv salts. The carbyne-carbide cluster 6 was partially characterized by IR spectroscopy and ESI-MS, and its structure was computationally predicted using DFT methods. The redox behavior of 2 and 3 was investigated by electrochemical and IR spectroelectrochemical methods. Computational studies were performed in order to unravel structural and thermodynamic aspects of these octahedral Ru-carbide carbonyl clusters displaying miscellaneous ligands and charges in comparison with related iron derivatives.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna. Italy
| | - Marco Bortoluzzi
- Dipartimento
di Scienze Molecolari e Nanosistemi, Ca’
Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Tiziana Funaioli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi
13, 56124 Pisa, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna. Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna. Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna. Italy
| |
Collapse
|
2
|
Alkyne Coupling and Cyclization on Metal Cluster Complexes. Additions and Couplings of Dimethyl acetylenedicarboxylate to Ru6(μ6-C)(CO)14(μ3-η4-C4H4). J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
C – C coupling of alkynes to the CH2 group in a 1-phosphonioethenyl ligand in a zwitterionic dirhenium carbonyl complex. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Adams RD, Kaushal M, Rassolov VA, Smith MD. Synthesis and Chemistry of Ammonioethenyl and Phosphonioethenyl Ligands in Zwitterionic Dirhenium Carbonyl Complexes. Inorg Chem 2022; 61:12262-12274. [PMID: 35895600 DOI: 10.1021/acs.inorgchem.2c01471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New zwitterionic dirhenium carbonyl complexes containing ammonioethenyl and phosphonioethenyl ligands have been synthesized and studied. The reaction of Re2(CO)10 with C2H2 and Me3NO yielded the dirhenium complex Re2(CO)9(NMe3) (6) and the new zwitterionic complex Re2(CO)9[η1-E-2-CH═CH(NMe3)] (7). Compound 6 was characterized structurally and was found to have a NMe3 ligand in an equatorial coordination site cis to a long Re-Re single bond, Re-Re = 3.0938(2) Å. Compound 7 can be obtained from the reaction of 6 with ethyne (C2H2) formally by the insertion of ethyne into the Re-N bond to the NMe3 ligand. Compound 7 contains a 2-trimethylammonioethenyl ligand, -CH═CH(+NMe3), that is formally a zwitterion having a positive charge on the nitrogen atom and a negative charge on the terminal carbon atom. When coordinated to rhenium by the terminal ethenyl carbon atom, the negative charge on the -CH═CH(+NMe3) carbon atom is formally transferred to the rhenium atom. The reaction of Re2(CO)10 with C2H2 and NEt3 in the presence of Me3NO yielded the new dirhenium complex Re2(CO)9[η1-E-2-CH═CH(NEt3)] (8) together with some 6 and 7. Compound 8 is structurally similar to 7, but it contains a NEt3 group in the ammonioethenyl ligand in the place of the NMe3 group in 7. Reactions of 7 with PMePh2 and PPh3 yielded the zwitterionic 2-arylphosphonioethenyl-coordinated dirhenium carbonyl complexes, Re2(CO)9[η1-E-2-CH═CH(PPh2Me)] (9a) and Re2(CO)9[η1-E-2-CH═CH(PPh3)] (9b), and the zwitterionic 1-phosphonioethenyl ligand in the dirhenium carbonyl complexes, Re2(CO)9[η1-1-C(PPh2Me)(═CH2)] (10a), Re2(CO)8[μ-η2-1-C(PPh2Me)(═CH2)] (11a), and Re2(CO)8[[μ-η2-1-C(PPh3)(CH2)] (11b). Compound 10a was converted to 11a and the new compound Re2(CO)7(μ-H)[μ-η2-1-(CH2C)P(Ph)(Me)(o-C6H4)], (12) by decarbonylation using Me3NO. Compound 12 contains an ortho-metalated phenyl ring. The new products 6,7, 8, 9b, 10a, 11a, 11b and 12 were characterized structurally by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Richard D Adams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Meenal Kaushal
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vitaly A Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Taakili R, Barthes C, Lepetit C, Duhayon C, Valyaev DA, Canac Y. Direct Access to Palladium(II) Complexes Based on Anionic C, C, C-Phosphonium Ylide Core Pincer Ligand. Inorg Chem 2021; 60:12116-12128. [PMID: 34333976 DOI: 10.1021/acs.inorgchem.1c01316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of readily available imidazolium-phosphonium salt [MesIm(CH2)3PPh3](OTf)2 with PdCl2 in the presence of an excess of Cs2CO3 afforded selectively in one step the cationic Pd(II) complex [(C,C,C)Pd(NCMe)](OTf) exhibiting an LX2-type NHC-ylide-aryl C,C,C-pincer ligand via formal triple C-H bond activation. The replacement of labile MeCN in the latter by CNtBu and CO fragments allowed to estimate the overall electronic properties of this phosphonium ylide core pincer scaffold incorporating three different carbon-based donor ends by IR spectroscopy, cyclic voltammetry, and molecular orbital analysis, revealing its significantly higher electron-rich character compared to the structurally close NHC core pincer system with two phosphonium ylide extremities. The pincer complex [(C,C,C)Pd(CO)](OTf) represents a rare example of Pd(II) carbonyl species stable at room temperature and characterized by X-ray diffraction analysis. The treatment of isostructural cationic complexes [(C,C,C)Pd(NCMe)](OTf) and [(C,C,C)Pd(CO)](OTf) with (allyl)MgBr and nBuLi led to the formation of zwitterionic phosphonium organopalladates [(C,C,C)PdBr] and [(C,C,C)Pd(COnBu)], respectively.
Collapse
Affiliation(s)
- Rachid Taakili
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Christine Lepetit
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| |
Collapse
|
6
|
Adams RD, Akter H, Kaushal M, Smith MD, Tedder JD. Synthesis, Structures, and Transformations of Bridging and Terminally-Coordinated Trimethylammonioalkenyl Ligands in Zwitterionic Pentaruthenium Carbido Carbonyl Complexes. Inorg Chem 2021; 60:3781-3793. [PMID: 33616385 DOI: 10.1021/acs.inorgchem.0c03541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of the pentaruthenium cluster complexes Ru5(μ5-C)(CO)15 (5), Ru5(μ5-C)(CO)14[μ-η2-O═C(NMe2)](μ-H) (6), and Ru5(μ5-C)(CO)15Cl(μ-H) (7) with ethyne (C2H2) in the presence of Me3NO yielded the zwitterionic complexes Ru5(μ5-C)(CO)13[μ-η2-CHCH(NMe3)] (8), Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)](η1-E-CH═CH(NMe3)(μ-H) (9), and Ru5(μ5-C)(CO)13Cl[η1-E-CH═CH(NMe3)](μ-H) (11). Each product contains a positively charged trimethylammonioethenyl ligand, CH═CH(+NMe3), that is derived from a 2-trimethylammonioethenide, -CH═CH(+NMe3), zwitterion that formally has a positive charge on the nitrogen atom and a negative charge on the terminal enyl carbon atom. The trimethylammonioethenyl ligand, CH═CH(+NMe3) in 8 is a η2-ligand that bridges a Ru-Ru bond on a basal edge of the square-pyramidal Ru5 cluster by a combination of σ + π cooordination of the ethenyl group. Compounds 9 and 11 each contain a η1-terminally coordinated [η1-E-CH═CH(+NMe3)] ligand with an E stereochemistry at the C═C double bond in open Ru5 cluster complexes. Compound 9 was decarbonylated to yield the compound Ru5(μ5-C)(CO)12[μ-η2-O═C(NMe2)][μ-η2-CH═CH(NMe3)](μ-H) (10) containing a η2-bridging CHCH(+NMe3) ligand. Compound 10 was converted back to 9 by the addition of CO. Two zwitterionic products, Ru5(μ5-C)(CO)14[η1-E-CH═CH(NMe3)] (12) and Ru5(μ5-C)(CO)15[η1-E-CH═CH(NMe3)] (13), were obtained by the addition of CO to 8. Compound 12 is an intermediate en route to 13. Compound 12 contains a terminally coordinated η1-E-CH═CH(+NMe3) ligand on one of the basal Ru atoms of a square-pyramidal Ru5 cluster. Compound 13 also contains a terminally coordinated η1-E-CH═CH(+NMe3) ligand on the wing-tip bridging Ru atom of a butterfly Ru4C cluster. Treatment of 6 with methyl propiolate (HC≡CCO2Me) yielded the zwitterionic complex Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)][η1-E-(MeO2C)C═C(H)NMe3](μ-H) (14) that is structurally similar to 9 but contains a η1-E-(MeO2C)C═C(H)(+NMe3) ligand. Compound 14 eliminated the NMe3 group to yield the compounds Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)][μ-η2-(MeO2C)HC═CH] (15) which contains a bridging methoxycarbonyl-substituted alkenyl ligand and the known compound Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)](HNMe2)(μ-H) (16).
Collapse
Affiliation(s)
- Richard D Adams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Humaiara Akter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Meenal Kaushal
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jonathan D Tedder
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|