1
|
Huang L, Ran ZY, Liu X, Huang CM, Qin QP, Zhou J. One Luminescent Cadmium Iodide with Free Bifunctional Azole Sites as a Triple Sensor for Cu 2+, Fe 3+, and Cr 2O 72- Ions. Inorg Chem 2022; 61:14156-14163. [PMID: 35994725 DOI: 10.1021/acs.inorgchem.2c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The exploration of an excellent triple sensor for monitoring Cu2+, Fe3+, and Cr2O72- ions is of exceeding significance because of their serious effects on the human body. Herein, optically active 1H-3,5-bis(pyrazinyl)-1,2,4-triazole (Hbpt) with triazolyl and pyrazinyl groups was applied for the construction of a new type of organic hybrid cadmium iodide [Cd6I8(bpt)4(H2O)4]·2H2O (1) incorporating a hitherto-unknown [Cd3I4(H2O)2]2+ trimeric-cationic unit, which shows an orange light emission at 589 nm with a large Stokes shift of 246 nm. In virtue of the existence of free bifunctional azole sites as the receptors, 1 exhibits a highly selective and sensitive sensing property toward Cu2+, Fe3+, and Cr2O72- ions in aqueous solution with lower detection limits of 0.70∼4.46 ppm, which offers the sole example of cadmium iodide as an excellent triple sensor for detecting Cu2+, Fe3+, and Cr2O72- ions. Moreover, temperature-dependent luminescent determinations also reveal that 1 can be used as the potential luminescent molecular thermometer.
Collapse
Affiliation(s)
- Li Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Zi-You Ran
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Xing Liu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Chun-Mei Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P.R. China
| | - Jian Zhou
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| |
Collapse
|
2
|
Thuéry P, Harrowfield J. Contrasting Networks and Entanglements in Uranyl Ion Complexes with Adipic and trans, trans-Muconic Acids. Inorg Chem 2022; 61:2790-2803. [PMID: 35089692 DOI: 10.1021/acs.inorgchem.1c03168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adipic (hexane-1,6-dicarboxylic, adpH2) and trans,trans-muconic (trans,trans-hexa-2,4-diene-1,6-dicarboxylic, mucH2) acids have been reacted with uranyl cations under solvo-hydrothermal conditions, yielding nine homo- or heterometallic complexes displaying in their crystal structure the effects of the different flexibility of the ligands. The complexes [PPh4]2[(UO2)2(adp)3] (1) and [Ni(bipy)3][(UO2)2(muc)3]·5H2O (2), where bipy is 2,2'-bipyridine, crystallize as diperiodic networks with the hcb topology, the layers being strongly puckered or quasiplanar, respectively. Whereas [(UO2)2(adp)3Ni(cyclam)]·2H2O (3), where cyclam is 1,4,8,11-tetraazacyclotetradecane, crystallizes as a diperiodic network, [(UO2)2(muc)3Ni(cyclam)]·2H2O (4) is a triperiodic framework in which the NiII cations are introduced as pillars within a uranyl-muc2- framework with the mog topology. [UO2(adp)(HCOO)2Cu(R,S-Me6cyclam)]·2H2O (5), where R,S-Me6cyclam is 7(R),14(S)-5,5,7,12,12,14-hexamethylcyclam, is a diperiodic assembly with the sql topology, and it crystallizes together with [H2NMe2]2[(UO2)2(adp)3] (6), a highly corrugated hcb network with a square-wave profile, which displays 3-fold parallel interpenetration. In contrast, [(UO2)3(muc)2(O)2Cu(R,S-Me6cyclam)] (7) is a diperiodic assembly containing hexanuclear, μ3-oxido-bridged secondary building units which are the nodes of a network with the hxl topology. The two related complexes [PPh3Me]2[(UO2)2(adp)3]·4H2O (8) and [PPh3Me]2[(UO2)2(muc)3]·H2O (9) crystallize as hcb networks, but their different shapes, undulated or quasiplanar, respectively, result in different entanglements, 2-fold parallel interpenetration in 8 and 2-fold inclined 2D → 3D polycatenation in 9.
Collapse
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| |
Collapse
|
3
|
An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Wang GQ, Huang XF, Wu CH, Shen Y, Cai SL, Fan J, Zhang WG, Zheng SR. A hydrolytically stable hydrogen-bonded inorganic-organic network as a luminescence turn-on sensor for the detection of Bi3+ and Fe3+ cations in water. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Thuéry P, Harrowfield J. 2,5-Thiophenedicarboxylate: An Interpenetration-Inducing Ligand in Uranyl Chemistry. Inorg Chem 2021; 60:9074-9083. [PMID: 34110817 DOI: 10.1021/acs.inorgchem.1c01069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Seven uranyl ion complexes have been crystallized under solvo-hydrothermal conditions from 2,5-thiophenedicarboxylic acid (tdcH2) and diverse additional, structure-directing species. [UO2(tdc)(DMF)] (1) is a two-stranded monoperiodic coordination polymer, while [PPh3Me][UO2(tdc)(HCOO)] (2) is a simple chain with terminal formate coligands. Although it is also monoperiodic, [C(NH2)3][H2NMe2]2[(UO2)3(tdc)4(HCOO)] (3) displays an alternation of tetra- and hexanuclear rings. Two-stranded subunits are bridged by oxo-coordinated NiII cations to form a diperiodic network in [UO2(tdc)2Ni(cyclam)] (4), but a homometallic sql diperiodic assembly is built in [Cu(R,S-Me6cyclam)(H2O)][UO2(tdc)2]·H2O (5), to which the counterion is hydrogen bonded only. Diperiodic networks with the hcb topology are formed in both [Zn(phen)3][(UO2)2(tdc)3]·2H2O·3CH3CN (6) and [PPh4]2[(UO2)2(tdc)3]·2H2O (7). The slightly undulating layers in 6 are crossed by oblique columns of weakly interacting counterions in polythreading-like fashion. In contrast, the larger curvature in 7 allows for three-fold, parallel 2D interpenetration to occur. These results are compared with previously reported cases of interpenetration and polycatenation in the uranyl-tdc2- system.
Collapse
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| |
Collapse
|
6
|
Wang FF, Liu YY, Pei WY, Ma JF. Three Resorcin[4]arene-Based Two-Dimensional Zn(II) Supramolecular Isomers Synthesized via a Structure-Directing Strategy for Knoevenagel Condensation. Inorg Chem 2021; 60:7329-7336. [PMID: 33926185 DOI: 10.1021/acs.inorgchem.1c00497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, in the presence of three structure-directing agents (SDAs), a family of imidazole-functionalized resorcin[4]arene-based coordination polymers (CPs), [Zn(TIC4R)(HCOO)]·HCOO·0.5DMF·1.5H2O (1), [Zn(TIC4R)(CN)]·HCOO·DMF·2.5H2O (2), and [Zn(TIC4R)(H2O)]·2HCOO·2H2O (3), were assembled under solvothermal conditions [TIC4R = tetra(imidazole) resorcin[4]arene]. 1 exhibits a double-layer structure with rectangle windows, and 2 and 3 display monolayer structures. The layers of CPs 2 and 3 are slides with different offsets along the a-axis. In addition, three CPs were used as catalysts to catalyze Knoevenagel condensations. Strikingly, all CPs exhibit remarkable catalytic performance for several substrates. To the best of our knowledge, this is the first time that a small organic acid as SDA was used in the syntheses of resorcin[4]arene-based supramolecular isomers.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ying-Ying Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
7
|
Ghafoor S, Aftab F, Rauf A, Duran H, Kirchhoff K, Arshad SN. P‐doped TiO
2
Nanofibers Decorated with Ag Nanoparticles for Enhanced Photocatalytic Activity under Simulated Solar Light. ChemistrySelect 2020. [DOI: 10.1002/slct.202003287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samina Ghafoor
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences DHA Lahore Cantt. 54792 Lahore Pakistan
- Institute of Chemistry University of the Punjab P.O. Box 54590 Lahore Pakistan
| | - Faryal Aftab
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences DHA Lahore Cantt. 54792 Lahore Pakistan
| | - Ali Rauf
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences DHA Lahore Cantt. 54792 Lahore Pakistan
| | - Hatice Duran
- Department of Materials Science and Nanotechnology Engineering TOBB University of Economics and Technology Söğütözü Cd. 43 06560 Ankara Turkey
| | - Katrin Kirchhoff
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Rhineland-Palatinate Germany
| | - Salman N. Arshad
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences DHA Lahore Cantt. 54792 Lahore Pakistan
| |
Collapse
|
8
|
Zhang C, Guo F, Dai Y, Zhang Y, Feng J, Wang N, Wang J. [(UO
2
)(C
10
H
8
N
2
O
2
)
2
][HPW
12
O
40
]: The First Case of a Uranyl Coordination Network Containing a Keggin‐Type Polyoxometalate. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chi Zhang
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan PR China
| | - Fengwan Guo
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan PR China
| | - Yong Dai
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan PR China
| | - Yu Zhang
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan PR China
| | - Jing Feng
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan PR China
| | - Nan Wang
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan PR China
| | - Juan Wang
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan PR China
- Key Laboratory of Optoelectronic Chemical Materials and Devices Ministry of Education Jianghan University 430056 Wuhan China
| |
Collapse
|
9
|
Hou X, Tang SF. Variability of Uranyl Carboxylates from Rigid Terophenyldicarboxylic Acid Ligands. Inorg Chem 2020; 59:15824-15831. [PMID: 33090775 DOI: 10.1021/acs.inorgchem.0c02278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three uranyl carboxylates, namely, (UO2)(L1)(H2O)0.5 (1), [(UO2)(L2)(H2O)]·2H2O (2), and [(UO2)(L2)(H2O)]·(CH3CN) (3), were synthesized hydrothermally from 2',3',5',6'-tetramethyl-(1,1':4',1″-terphenyl)-4,4″-dicarboxylic acid (H2L1) and 2',5'-dimethyl-(1,1':4',1″-terphenyl)-3,3″-dicarboxylic acid (H2L2), which are all steric carboxylic acid ligands but vary with the carboxylic acid group position and methyl group number. It is found that compound 1 displays a three-dimensional 8-fold-interpenetrated net with channels running along the c direction. Compounds 2 and 3 are isostructural, and all display two-dimensional-layered crystal structures but contain different guest molecules. The photophysical measurements reveal that compounds 1 and 2, which contain disordered water molecules, are luminescence-quenched, whereas compound 3 containing acetonitrile molecules is luminescent.
Collapse
|
10
|
Yuan R, He H. State of the art methods and challenges of luminescent metal–organic frameworks for antibiotic detection. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00955e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on recent developments in the design and synthesis of luminescence MOFs for monitoring antibiotics.
Collapse
Affiliation(s)
- Rongrong Yuan
- Department of Materials Science and Engineering
- Jilin Jianzhu University
- Changchun 130118
- P. R. China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|