1
|
Lee HB, Ciolkowski N, Field M, Marchiori DA, Britt RD, Green MT, Rittle J. In Crystallo O 2 Cleavage at a Preorganized Triiron Cluster. J Am Chem Soc 2025; 147:770-779. [PMID: 39718446 DOI: 10.1021/jacs.4c13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In Nature, the four-electron reduction of O2 is catalyzed at preorganized multimetallic active sites. These complex active sites often feature low-coordinate, redox-active metal centers precisely positioned to facilitate rapid O2 activation processes that obviate the generation of toxic, partially reduced oxygen species. Very few biomimetic constructs simultaneously recapitulate the complexity and reactivity of these biological cofactors. Herein, we report solid-state O2 activation at a triiron(II) active site templated by phosphinimide ligands. Insight into the structure of the O2 reduction intermediates was obtained via in crystallo O2 dosing experiments in conjunction with spectroscopic, structural, magnetic, and computational studies. These data support the in situ formation of an Fe2IIIFeIV-dioxo intermediate upon exposure to O2 that participates in oxygen atom and hydrogen atom transfer reactivity with exogenous substrates to furnish a stable FeIIFe2III-oxo species. Combined, these studies provide an extraordinary level of detail into the dynamics of bond-forming and -breaking processes operative at complex multimetallic active sites.
Collapse
Affiliation(s)
- Heui Beom Lee
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Nicholas Ciolkowski
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Mackenzie Field
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - David A Marchiori
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jonathan Rittle
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Di K, Yang D, Su L, Du R, Dong S, Wang B, Qu J. A new family of thiolate-bridged bimetallic complexes featuring a benzimidazole moiety: synthesis, structure and redox reactivity. Dalton Trans 2024; 53:18754-18761. [PMID: 39495488 DOI: 10.1039/d4dt02484b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Thiolate-bridged bimetallic complexes have attracted considerable attention owing to their extensive applications in bioinspired catalysis as biological metalloenzymes. Compared with bimetallic complexes supported by common thiolate ligands, those featuring functional groups that may adopt different patterns to coordinate to the metal centers are usually difficult to access, limiting their exploration. The benzimidazole moiety is a multi-faceted functional group; for example, it can act as a biomolecule-responsive ligand for the development of transition metal complexes with anticancer and antitumor properties. However, so far, there has been no report on thiolate-bridged bimetallic complexes featuring a benzimidazole moiety as the functional group. In this work, we use half-sandwich type monometallic (iron, cobalt or ruthenium) complexes as precursors to synthesize a series of thiolate-bridged bimetallic complexes via reactions with benzimidazolylmethyl disulfide (bzmds) and benzimidazol-2-ylmethanethiol (bzmt). X-ray crystallographic analyses show that diiron and dicobalt complexes feature two bzmt ligands in a syn configuration, which are bridged to the two MIII centers through the sulfur and nitrogen atoms. In contrast, the diruthenium complex possesses syn- and anti-configuration isomers in both solution- and solid-state, and the corresponding ratio of the two isomers varies upon employing different solvents. Electrochemical studies reveal that these complexes possess two or more redox couples. In particular, an FeIIIFeIII complex can undergo one-electron reduction to give an isolable FeIIFeIII species. In addition, we investigated their electronic structures by UV/vis spectroscopy and density functional theory (DFT).
Collapse
Affiliation(s)
- Kai Di
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Linan Su
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Ronghuan Du
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Shengbin Dong
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Shen K, Gennari M, Philouze C, Velić A, Demeshko S, Meyer F, Duboc C. Chromium-Thiolate Complex Undergoing C-S Bond Cleavage. Inorg Chem 2024; 63:9119-9128. [PMID: 38709854 DOI: 10.1021/acs.inorgchem.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The cleavage of C-S bonds represents a crucial step in fossil fuel refinement to remove organosulfur impurities. Efforts are required to identify alternatives that can replace the energy-intensive hydrodesulfurization process currently in use. In this context, we have developed a series of bis-thiolato-ligated CrIII complexes supported by the L2- ligand (L2- = 2,2'-bipyridine-6,6'-diyl(bis(1,1-diphenylethanethiolate), one of them displaying desulfurization of one thiolate of the ligand under reducing and acidic conditions at ambient temperature and atmospheric pressure. While only 5-coordinated complexes were previously isolated by reaction of L2- with 3d metal MIII ions, both 5- and 6-coordinated mononuclear complexes have been obtained in the case of CrIII, viz., [CrIIILCl], [CrIIILCl2]-, and [CrIIILCl(CH3CN)]. The investigation of the reactivity of [CrIIILCl(CH3CN)] under reducing conditions led to a dinuclear [CrIII2L2(μ-Cl)(μ-OH)] compound and, in the presence of protons, to the mononuclear CrIII complex [CrIII(LN2S)2]+, where LN2S- is the partially desulfurized form of L2-. A desulfurization mechanism has been proposed involving the release of H2S, as evidenced experimentally.
Collapse
Affiliation(s)
- Kaiji Shen
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM Grenoble F-38000, France
| | - Marcello Gennari
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM Grenoble F-38000, France
| | | | - Ajdin Velić
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, Göttingen D- 37077, Germany
| | - Serhiy Demeshko
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, Göttingen D- 37077, Germany
| | - Franc Meyer
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, Göttingen D- 37077, Germany
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM Grenoble F-38000, France
| |
Collapse
|
4
|
Santra A, Das A, Kaur S, Jain P, Ingole PP, Paria S. Catalytic reduction of oxygen to water by non-heme iron complexes: exploring the effect of the secondary coordination sphere proton exchanging site. Chem Sci 2024; 15:4095-4105. [PMID: 38487234 PMCID: PMC10935699 DOI: 10.1039/d3sc06753j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, we prepared non-heme FeIII complexes (1, 2, and 3) of an N4 donor set of ligands (H2L, Me2L, and BPh2L). 1 is supported by a monoanionic bispyridine-dioxime ligand (HL). In 2 and 3, the primary coordination sphere of Fe remained similar to that in 1, except that the oxime protons of the ligand were replaced with two methyl groups and a bridging -BPh2 moiety, respectively. X-ray structures of the FeII complexes (1a and 3a) revealed similar Fe-N distances; however, they were slightly elongated in 2a. The FeIII/FeII potential of 1, 2, and 3 appeared at -0.31 V, -0.25 V, and 0.07 V vs. Fc+/Fc, respectively, implying that HL and Me2L have comparable donor properties. However, BPh2L is more electron deficient than HL or Me2L. 1 showed electrocatalytic oxygen reduction reaction (ORR) activity in acetonitrile in the presence of trifluoroacetic acid (TFAH) as the proton source at Ecat/2 = -0.45 V and revealed selective 4e-/4H+ reduction of O2 to H2O. 1 showed an effective overpotential (ηeff) of 0.98 V and turnover frequency (TOFmax) of 1.02 × 103 s-1. Kinetic studies revealed a kcat of 2.7 × 107 M-2 s-1. Strikingly, 2 and 3 remained inactive for electrocatalytic ORR, which established the essential role of the oxime scaffolds in the electrocatalytic ORR of 1. Furthermore, a chemical ORR of 1 has been investigated using decamethylferrocene as the electron source. For 1, a similar rate equation was noted to that of the electrocatalytic pathway. A kcat of 6.07 × 104 M-2 s-1 was found chemically. Complex 2, however, underwent a very slow chemical ORR. Complex 3 chemically enhances the 4e-/4H+ reduction of O2 and exhibits a TOF of 0.24 s-1 and a kcat value of 2.47 × 102 M-1 s-1. Based on the experimental observations, we demonstrate that the oxime backbone of the ligand in 1 works as a proton exchanging site in the 4e-/4H+ reduction of O2. The study describes how the ORR is affected by the tuning of the ligand scaffold in a family of non-heme Fe complexes.
Collapse
Affiliation(s)
- Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Priya Jain
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
5
|
Atta S, Mandal A, Saha R, Majumdar A. Reduction of nitrite to nitric oxide and generation of reactive chalcogen species by mononuclear Fe(II) and Zn(II) complexes of thiolate and selenolate. Dalton Trans 2024; 53:949-965. [PMID: 38126213 DOI: 10.1039/d3dt03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Comparative reactivity of a series of new Zn(II) and Fe(II) compounds, [(Py2ald)M(ER)] (E = S, R = Ph: M = Zn, 1aZn; M = Fe, 1aFe; E = S, R = 2,6-Me2-C6H3: M = Zn, 1bZn; M = Fe, 1bFe; E = Se, R = Ph: M = Zn, 2Zn; M = Fe, 2Fe), and [(Py2ald)M]22+ (M = Zn, 5Zn; M = Fe, 5Fe) is presented. Compound 1aZn could react with nitrite (NO2-) to produce [(Py2ald)Zn(ONO)] (3Zn), which, upon treatment with thiols and PhSeH (proton source), could regenerate either 1aZn/5Zn and 2Zn respectively, along with the production of nitric oxide (NO) where the yield of NO increases in the order tBuSH ≪ PhCH2SH < PhSH < PhSeH. In contrast to this, 1aFe, 2Fe and 5Fe could affect the direct reduction of NO2- in the absence of protons to generate NO and [{(Py2ald)(ONO)Fe}2-μ2-O] (8Fe). Moreover, 8Fe could regenerate 5Fe and 1aFe/2Fe upon treatment with 4 and 6 equiv. of PhEH (E = S/Se), respectively, along with the generation of NO. Finally, a comparative study of the mononuclear Zn(II) and Fe(II) compounds for the transfer of the coordinated thiolate/selenolate and the generation and transfer of reactive sulfur/selenium species (RES-, E = Se, S) to a series of organic substrates has been provided.
Collapse
Affiliation(s)
- Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Amit Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Rahul Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| |
Collapse
|
6
|
Zars E, Gravogl L, Gau MR, Carroll PJ, Meyer K, Mindiola DJ. Isostructural bridging diferrous chalcogenide cores [Fe II(μ-E)Fe II] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series. Chem Sci 2023; 14:6770-6779. [PMID: 37350823 PMCID: PMC10283490 DOI: 10.1039/d3sc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(μ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(μ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Lisa Gravogl
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| |
Collapse
|
7
|
Wu T, Wang S, Lv Y, Fu T, Jiang J, Lu X, Yu ZP, zhang J, Wang L, Zhou HP. A New Bis(thioether)-Dipyrrin N2S2 Ligand and Its Coordination Behaviors to Nickel, Copper and Zinc. Dalton Trans 2022; 51:9699-9707. [DOI: 10.1039/d2dt01282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetradentate N2S2 coordination platforms are widespread in biological system and have endowed the metalloenzymes and metalloproteins with abundant reactivities and functions. However, there have only three types of N2S2 scaffolds...
Collapse
|
8
|
Singh S, Nautiyal D, Thetiot F, Le Poul N, Goswami T, Kumar A, Kumar S. Bioinspired Heterobimetallic Photocatalyst ( RuIIchrom-FeIIIcat) for Visible-Light-Driven C-H Oxidation of Organic Substrates via Dioxygen Activation. Inorg Chem 2021; 60:16059-16064. [PMID: 34662098 DOI: 10.1021/acs.inorgchem.1c02514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a bioinspired heterobimetallic photocatalyst RuIIchrom-FeIIIcat and its relevant applications toward visible-light-driven C-H bond oxidation of a series of hydrocarbons using O2 as the O-atom source. The RuII center absorbs visible light near 460 nm and triggers a cascade of electrons to FeIII to afford a catalytically active high-valent FeIV═O species. The in situ formed FeIV═O has been employed for several high-impact oxidation reactions in the presence of triethanolamine (TEOA) as the sacrificial electron donor.
Collapse
Affiliation(s)
- Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Franck Thetiot
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, CS 93837, Brest 29238, France
| | - Nicolas Le Poul
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, CS 93837, Brest 29238, France
| | - Tapas Goswami
- Department of Chemistry, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Sushil Kumar
- Department of Chemistry, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
9
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
10
|
Ekanayake DM, Pham D, Probst AL, Miller JR, Popescu CV, Fiedler AT. Electronic structures and spectroscopic signatures of diiron intermediates generated by O 2 activation of nonheme iron(II)-thiolate complexes. Dalton Trans 2021; 50:14432-14443. [PMID: 34570147 PMCID: PMC8721859 DOI: 10.1039/d1dt02286e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The activation of O2 at thiolate-ligated iron(II) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron-thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O2 to catalyze tandem S-C bond formation and S-oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron-thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA (Dalton Trans. 2020, 49, 17745-17757). These models feature monodentate thiolate ligands and tripodal N4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron(III) dimers with a bridging oxo ligand derived from the four-electron reduction of O2. Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron(III)-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron(III)-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O2 reaction landscapes of iron-thiolate species in both biological and synthetic environments.
Collapse
Affiliation(s)
| | - Dao Pham
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | - Andrew L Probst
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | - Joshua R Miller
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| | - Codrina V Popescu
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | - Adam T Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA.
| |
Collapse
|
11
|
Börner M, Fuhrmann D, Klose J, Krautscheid H, Kersting B. Ethereal Hydroperoxides: Powerful Reagents for S-Oxygenation of Bridging Thiophenolate Functions. Inorg Chem 2021; 60:13517-13527. [PMID: 34415154 DOI: 10.1021/acs.inorgchem.1c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Oxygenation of thiophenolate bridges by ethereal hydroperoxides was studied. [NiII2LS(PhCO2)]+ (1), where LS = macrocyclic aminethiolate supporting ligand, is S-oxygenated readily in a mixed methanol/acetonitrile solution with ether/dioxygen at room temperature in the presence of daylight. The reactions were found to depend strongly on the choice of the ether. Uptake of two O atoms occurs in dioxane to give a mixed thiolate/sulfinate complex [NiII2LSO2(PhCO2)]+ (2) containing the rare five-membered Ni(μ1,1-S)(μ1,2-OS)Ni core. In tetrahydrofuran, four O atoms are taken up by 1 to generate the bis(sulfinate) species [NiII2LSO4(PhCO2)]+ (3). A mono-S-oxygenated sulfenate intermediate can be detected by electrospray ionization mass spectrometry. The oxygenation reactions proceed in high yields without complex disintegration and invariably provide μ1,2-bridging sulfinates as established by spectroscopy (IR and UV/vis), X-ray crystallography, and accompanying density functional theory calculations. The oxygenation of the S atoms has a strong impact on the electronic structures of the nickel complexes. The monosulfinate complex 2 has an S = 2 ground state resulting from moderate ferromagnetic exchange coupling interactions (J = +15.7 cm-1; H = -2JS1S2), while an antiferromagnetic exchange interaction in 3 shows the presence of a ground state with spin S = 0 (J = -0.56 cm-1).
Collapse
Affiliation(s)
- Martin Börner
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Abteilung Funktionale Oberflächen, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Daniel Fuhrmann
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Jennifer Klose
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Harald Krautscheid
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Berthold Kersting
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Gordon JB, McGale JP, Siegler MA, Goldberg DP. Proton-Coupled Electron-Transfer Reactivity Controls Iron versus Sulfur Oxidation in Nonheme Iron-Thiolate Complexes. Inorg Chem 2021; 60:6255-6265. [PMID: 33872005 DOI: 10.1021/acs.inorgchem.0c03779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of the five-coordinate FeII(N4S) complexes, [FeII(iPr3TACN)(abtX)](OTf) (abt = aminobenzenethiolate, X = H, CF3), with a one-electron oxidant and an appropriate base leads to net H atom loss, generating new FeIII(iminobenzenethiolate) complexes that were characterized by single-crystal X-ray diffraction (XRD), as well as UV-vis, EPR, and Mössbauer spectroscopies. The spectroscopic data indicate that the iminobenzenethiolate complexes have S = 3/2 ground states. In the absence of a base, oxidation of the FeII(abt) complexes leads to disulfide formation instead of oxidation at the metal center. Bracketing studies with separated proton-coupled electron-transfer (PCET) reagents show that the FeII(aminobenzenethiolate) and FeIII(iminobenzenethiolate) forms are readily interconvertible by H+/e- transfer and provide a measure of the bond dissociation free energy (BDFE) for the coordinated N-H bond between 64 and 69 kcal mol-1. This work shows that coordination to the iron center causes a dramatic weakening of the N-H bond and that Fe- versus S-oxidation in a nonheme iron complex can be controlled by the protonation state of an ancillary amino donor.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jeremy P McGale
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Zhu H, Aarons J, Peng Q. High spin polarized Fe2 cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis from a theoretical perspective. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01083b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Compared to other Fen (n > 2) clusters, Fe2 cluster catalysts combined with vicinal nonmetallic sites are expected to be an ideal catalyst for ammonia synthesis with a lower N–H formation (0.47 eV) and N–N dissociation (0.50 eV) energy barrier at the same time.
Collapse
Affiliation(s)
- Hongdan Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jolyon Aarons
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Gennari M, Duboc C. Bio-inspired, Multifunctional Metal-Thiolate Motif: From Electron Transfer to Sulfur Reactivity and Small-Molecule Activation. Acc Chem Res 2020; 53:2753-2761. [PMID: 33074643 DOI: 10.1021/acs.accounts.0c00555] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfur-rich metalloproteins and metalloenzymes, containing strongly covalent metal-thiolate (cysteinate) or metal-sulfide bonds in their active site, are ubiquitous in nature. The metal-sulfur motif is a highly versatile tool involved in various biological processes: (i) metal storage, transport, and detoxification; (ii) electron transfer; (iii) activation of the sulfur atom to promote different types of S-based reactions including S-alkylation, S-oxygenation, S-nitrosylation, or disulfide or thiyl radicals formation; (iv) activation of small earth-abundant molecules (such as water, dioxygen, superoxide radical anion, carbon oxides, nitrous oxide, and dinitrogen).This Account describes our investigations carried out during the past 10 years on bio-inspired and biomimetic low-nuclearity complexes containing metal-thiolate bonds. The general objective of these structural, spectroscopic, electrochemical, and catalytic studies was to determine structure-properties-function correlations useful to (i) understanding the peculiar features or the mechanism of the mimicked natural systems and/or (ii) reproducing enzymatic reactivities for specific catalytic applications.By employing a unique highly preorganized N2S2-donor ligand with two thiolate functions, in combination with different first-row transition metals (Mn, Fe, Co, Ni, Cu, Zn, or V), we got access to a series of bio-inspired sulfur-rich complexes displaying a widespread spectrum of structures, properties, and functions. We isolated a dicopper(I) complex that, for the first time, mimicked concomitantly the key structural, spectroscopic, and redox features of the biological CuA center, a highly efficient electron transfer agent involved in the respiratory enzyme cytochrome c oxidase. In the field of sulfur activation, we explored (i) sulfur methylation promoted by a Zn-dithiolate complex that mimics Zn-dependent thiolate alkylation proteins and shows different selectivity compared to the Ni and Co congeners and (ii) a series of Co, Fe, and Mn complexes as the first copper-free systems able to promote thiolate/disulfide interconversion mediated by (de)coordination of halides. Concerning metal-centered reactivity, we investigated two families of metal-thiolate catalysts for small-molecule activation, especially relevant in the fields of sustainable fuel production and energy conversion: (i) two isostructural Mn and Fe dinuclear complexes that activate and reduce dioxygen selectively, either to hydrogen peroxide or water as a function of the experimental conditions; (ii) a family of dinuclear MFe (M = Ni or Fe) hydrogenase mimics active for catalytic H2 evolution both in organic solution and on modified electrodes in water.This Account thus illustrates how the versatility of thiolate ligation can support selected functions for transition metal complexes, depending on the nature of the metal, the nuclearity of the complex, the presence and type of co-ligands, the second coordination sphere effects, and the experimental conditions.
Collapse
Affiliation(s)
- Marcello Gennari
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Carole Duboc
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
15
|
Shan C, Yao S, Driess M. Where silylene–silicon centres matter in the activation of small molecules. Chem Soc Rev 2020; 49:6733-6754. [DOI: 10.1039/d0cs00815j] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small molecules such as H2, N2, CO, NH3, O2 are ubiquitous stable species and their activation and role in the formation of value-added products are of fundamental importance in nature and industry.
Collapse
Affiliation(s)
- Changkai Shan
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Shenglai Yao
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Matthias Driess
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|