1
|
Xu C, Cao L, Chen H, Liu T, Liang W, Li Y. Copper-Driven Formation of Prothioconazole Nanocomplex: An Innovative Strategy to Prepare Nanopesticide with Improved Bioactivity and Reduced Environmental Impacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406419. [PMID: 39439147 DOI: 10.1002/smll.202406419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Developing cost-effective, energy-saving, and eco-friendly methods to construct nanopesticides fulfill the requirement of modern agriculture. Benefiting from the versatility of metal-based complexes, a facile copper-driven method is discovered for the formation of a fungicide prothioconazole nanocomplex (Cu-Pro) with the particle size of ≈300 ± 85 nm. Interestingly, adding 0.5-1% of anionic surfactants could generate nanocomplexes within 60 ± 12 nm and form stable dispersed nanosuspensions. Both nanocomplexes exhibit remarkable control efficacy against six plant pathogenic fungi, and the EC50 values are 1.4-4.8 times lower than that of prothioconazole technical concentrate (Pro TC). In addition, the novel nanocomplexes demonstrate better resistance against UV irradiation and the half-lives are 3.27- and 1.56-times longer than that of Pro TC, respectively. The acute toxicity of prothioconazole nanocomplexes against non-target organism zebrafish is decreased. Due to the small size and chelation with metals, the uptake and accumulation of prothioconazole in wheat plant is promoted, and the metabolites prothioconazole-desthio is significantly decreased by 42-48% than that of Pro TC. This metal coordination-based strategy seeks to open a new avenue for the high-throughput preparation of nanopesticides, providing an innovative toolbox for reducing the input of agrochemicals in sustainable plant protection.
Collapse
Affiliation(s)
- Chunli Xu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Huiping Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Tingting Liu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Wenlong Liang
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Yuanbo Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang, 453500, China
| |
Collapse
|
2
|
Zhou W, Arcot Y, Medina RF, Bernal J, Cisneros-Zevallos L, Akbulut MES. Integrated Pest Management: An Update on the Sustainability Approach to Crop Protection. ACS OMEGA 2024; 9:41130-41147. [PMID: 39398119 PMCID: PMC11465254 DOI: 10.1021/acsomega.4c06628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Integrated Pest Management (IPM) emerged as a pest control framework promoting sustainable intensification of agriculture, by adopting a combined strategy to reduce reliance on chemical pesticides while improving crop productivity and ecosystem health. This critical review synthesizes the most recent advances in IPM research and practice, mostly focusing on studies published within the past five years. The Review discusses the key components of IPM, including cultural practices, biological control, genetic pest control, and targeted pesticide application, with a particular emphasis on the significant advancements made in biological control and targeted pesticide delivery systems. Recent findings highlight the growing importance of genetic control and conservation biological control, which involves the management of agricultural landscapes to promote natural enemy populations. Furthermore, the recent discovery of novel biopesticides, including microbial agents and plant-derived compounds, has expanded the arsenal of tools available for eco-friendly pest management. Substantial progress has recently also been made in the development of targeted pesticide delivery systems, such as nanoemulsions and controlled-release formulations, which can minimize the environmental impact of pesticides while maintaining their efficacy. The Review also analyzes the environmental, economic, and social dimensions of IPM adoption, showcasing its potential to promote biodiversity conservation and ensure food safety. Case studies from various agroecological contexts demonstrate the successful implementation of IPM programs, highlighting the importance of participatory approaches and effective knowledge exchange among stakeholders. The Review also identifies the main challenges and opportunities for the widespread adoption of IPM, including the need for transdisciplinary research, capacity building, and policy support. In conclusion, this critical review discusses the essential role of IPM components in achieving the sustainable intensification of agriculture, as it seeks to optimize crop production while minimizing adverse environmental impacts and enhancing the resilience of agricultural systems to global challenges such as climate change and biodiversity loss.
Collapse
Affiliation(s)
- Wentao Zhou
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yashwanth Arcot
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raul F. Medina
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Julio Bernal
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - Mustafa E. S. Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Materials
Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Luo J, Jia M, Yang X, Chai Y, Bao Y. Interaction between lactic acid bacteria and Polygonatum sibiricum saponins and its application to microencapsulated co-delivery. Food Chem 2024; 448:138959. [PMID: 38552464 DOI: 10.1016/j.foodchem.2024.138959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/24/2024]
Abstract
This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.
Collapse
Affiliation(s)
- Jiayuan Luo
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Mingjie Jia
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Xue Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Yangyang Chai
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China.
| | - Yihong Bao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China
| |
Collapse
|
4
|
Ma C, Li G, Xu W, Qu H, Zhang H, Bahojb Noruzi E, Li H. Recent Advances in Stimulus-Responsive Nanocarriers for Pesticide Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602422 DOI: 10.1021/acs.jafc.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In an effort to make pesticide use safer, more efficient, and sustainable, micro-/nanocarriers are increasingly being utilized in agriculture to deliver pesticide-active agents, thereby reducing quantities and improving effectiveness. In the use of nanopesticides, the choice to further design and prepare pesticide stimulus-responsive nanocarriers based on changes in the plant growth environment (light, temperature, pH, enzymes, etc.) has received more and more attention from researchers. Based on this, this paper examines recent advancements in nanomaterials for the design of stimulus-responsive micro-/nanocarriers. It delves into the intricacies of preparation methods, material enhancements, in vivo/ex vivo controlled release, and application techniques for controlled release formulations. The aim is to provide a crucial reference for harnessing nanotechnology to pursue reduced pesticide use and increased efficiency.
Collapse
Affiliation(s)
- Cuiguang Ma
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haifan Zhang
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ehsan Bahojb Noruzi
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haibing Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
5
|
Preetam S, Duhita Mondal D, Mukerjee N, Naser SS, Tabish TA, Thorat N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater Sci Eng 2024; 10:1946-1965. [PMID: 38427627 PMCID: PMC11005017 DOI: 10.1021/acsbiomaterials.3c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Collapse
Affiliation(s)
- Subham Preetam
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Deb Duhita Mondal
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata, West Bengal 700107, India
| | - Nobendu Mukerjee
- Centre
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
- Department
of Science and Engineering, Novel Global
Community and Educational Foundation, Hebasham 2770, NSW, Australia
| | | | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford, OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick
Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
6
|
Ma E, Fu Z, Chen K, Sun L, Zhang Y, Liu Z, Li L, Guo X. Smart Protein-Based Fluorescent Nanoparticles Prepared by a Continuous Nanoprecipitation Method for Pesticides' Precise Delivery and Tracing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37221148 DOI: 10.1021/acs.jafc.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is highly desirable to develop smart and green pesticide nanoformulations for improving pesticide targeting and reducing their inherent toxicity. Herein, we demonstrate a continuous nanoprecipitation method to construct a novel type of enzyme-responsive fluorescent nanopesticides (denoted as ABM@BSA-FITC/GA NPs) based on abamectin, fluorescein isothiocyanate isomer (FITC)-modified protein, and food-grade gum arabic. The as-prepared ABM@BSA-FITC/GA NPs exhibit good water dispersibility, excellent storage stability, and enhanced wettability compared to commercial formulations. The controlled release of pesticides can be achieved through protein degradation caused by trypsin. Most importantly, the deposition, distribution, and transport of the ABM@BSA-FITC/GA NPs are precisely tracked on target plants (cabbage and cucumber) by fluorescence. Furthermore, the ABM@BSA-FITC/GA NPs show the high control efficacy against Plutella xylostella L., which is comparable with commercial emulsifiable concentrate formulation. In consideration of its eco-friendly composition and absence of organic solvent, this pesticide nanoformulation has promising potential in sustainable plant protection.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Yuhua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|
7
|
Vinzant K, Rashid M, Khodakovskaya MV. Advanced applications of sustainable and biological nano-polymers in agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 13:1081165. [PMID: 36684740 PMCID: PMC9852866 DOI: 10.3389/fpls.2022.1081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Though still in its infancy, the use of nanotechnology has shown promise for improving and enhancing agriculture: nanoparticles (NP) offer the potential solution to depleted and dry soils, a method for the controlled release of agrochemicals, and offer an easier means of gene editing in plants. Due to the continued growth of the global population, it is undeniable that our agricultural systems and practices will need to become more efficient in the very near future. However, this new technology comes with significant worry regarding environmental contamination. NP applied to soils could wash into aquifers and contaminate drinking water, or NP applied to food crops may carry into the end product and contaminate our food supply. These are valid concerns that are not likely to be fully answered in the immediate future due to the complexity of soil-NP interactions and other confounding variables. Therefore, it is obviously preferred that NP used outdoors at this early stage be biodegradable, non-toxic, cost-effective, and sustainably manufactured. Fortunately, there are many different biologically derived, cost-efficient, and biocompatible polymers that are suitable for agricultural applications. In this mini-review, we discuss some promising organic nanomaterials and their potential use for the optimization and enhancement of agricultural practices.
Collapse
|
8
|
Liang Y, Wang S, Jia H, Yao Y, Song J, Dong H, Cao Y, Zhu F, Huo Z. Pectin functionalized metal-organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks. Colloids Surf B Biointerfaces 2022; 219:112796. [PMID: 36063717 DOI: 10.1016/j.colsurfb.2022.112796] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/21/2023]
Abstract
Encapsulation of active ingredients into intelligent response controlled release carriers has been recognized as a promising approach to enhance the utilization efficiency and reduce the environmental risks of pesticides. In this work, an intelligent redox and pectinase dual stimuli-responsive pesticide delivery system was constructed by bonding pectin with metal-organic frameworks (FeMOF nanoparticles) which were loaded with pyraclostrobin (PYR@FeMOF-pectin nanoparticles). The successful fabrication of PYR@FeMOF-pectin nanoparticles was proved by a series of physicochemical characterizations. The results indicated that the loading capacity of PYR@FeMOF-pectin nanoparticles for pyraclostrobin was approximately 20.6%. The pectin covered on the surface of PYR@FeMOF nanoparticles could protect pyraclostrobin from photolysis and improve their spreadability on rice blades effectively. Different biological stimuli associated with Magnaporthe oryzae could trigger the release of pyraclostrobin from the pesticide-loaded core-shell nanoparticles, resulting in the death of pathogens. The bioactivity survey determined that PYR@FeMOF-pectin nanoparticles had a superior fungicidal activity and a longer duration against Magnaporthe oryzae than pyraclostrobin suspension concentrate. In addition, the FeMOF-pectin nanocarriers showed no obvious phytotoxicity and could enhance the shoot length and root length of rice plants. More importantly, PYR@FeMOF-pectin nanoparticles had an 8-fold reduction in acute toxicity to zebrafish than that of pyraclostrobin suspension concentrate. Therefore, the dual-responsive FeMOF-pectin nanocarriers have great potential for realizing site-specific pesticide delivery and promoting plant growth.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China; Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Huijuan Jia
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yijia Yao
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Jiehui Song
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Hongqiang Dong
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Feng Zhu
- Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing, China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Jiang H, Hu X, Li Y, Yang C, Ngai T. Engineering proteinaceous colloidosomes as enzyme carriers for efficient and recyclable Pickering interfacial biocatalysis. Chem Sci 2021; 12:12463-12467. [PMID: 34603677 PMCID: PMC8480340 DOI: 10.1039/d1sc03693a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Despite Pickering interfacial biocatalysis being a popular topic in biphasic biocatalysis, the development of water-in-oil (w/o) emulsion systems stabilized by single particles remains a challenge. For the first time, hydrophobized proteinaceous colloidosomes with magnetic-responsiveness are developed to function as both an enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering bioconversion. Enzyme-loaded protein colloidosomes are synthesized by a facile and mild method via emulsion templating. This system exhibits superior catalytic activity to other systems at the oil–water interface. Besides, feasible enzyme recovery and reusability ensure that this novel system can be employed as an efficient and eco-friendly recyclable platform. Engineering proteinaceous colloidosomes with magnetic-responsiveness are designed as both enzyme carrier and emulsifier, achieving a breakthrough in protein-based w/o Pickering interfacial biocatalysis.![]()
Collapse
Affiliation(s)
- Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Xiaofeng Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Yunxing Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - To Ngai
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China .,Department of Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong P. R. China
| |
Collapse
|
10
|
Song S, Jiang X, Shen H, Wu W, Shi Q, Wan M, Zhang J, Mo H, Shen J. MXene (Ti 3C 2) Based Pesticide Delivery System for Sustained Release and Enhanced Pest Control. ACS APPLIED BIO MATERIALS 2021; 4:6912-6923. [PMID: 35006991 DOI: 10.1021/acsabm.1c00607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A multifunctional nanomaterials based pesticide delivery system provides a powerful strategy for the efficient utilization of pesticides. We present here the application of a 2D MXene (Ti3C2) nanomaterial for pesticide delivery and plant protection. Avermectin (AV), a hydrophobic and unstable insecticide, was chosen as the model pesticide. In our study, AV@Ti3C2 was formed by fast adsorption of AV on Ti3C2, with a maximum loading capacity of 81.44%. Compared with hydrophobic AV, AV@Ti3C2 exhibited significantly improved water solubility, which is beneficial for ensuring the bioactivity of pesticide. The AV@Ti3C2 nanoformulation showed pH responsive slow-release behavior, overcoming the burst-release of conventional AV formulations. Besides, AV@Ti3C2 possessed excellent photostability under UV irradiation, which prolonged the persistent period of AV. Therefore, AV@Ti3C2 performed sustaining and enhanced antipest activity, according to the bioactivity assay. Furthermore, AV@Ti3C2 showed satisfactory biosafety, with no negative effect to the germination and growth of maize. Our current research provides a potential candidate, AV@Ti3C2, for pest control, and also broadens the application of 2D MXene materials in plant protection and sustainable agriculture.
Collapse
Affiliation(s)
- Saijie Song
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xuefeng Jiang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, P. R. China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Minghui Wan
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun Zhang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hong Mo
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Su S, Chen L, Hao L, Chen H, Zhou X, Zhou H. Preparation of p-amino salicylic acid-modified polysuccinimide as water-based nanocarriers for enhancing pesticide stability and insecticidal activity. Colloids Surf B Biointerfaces 2021; 207:111990. [PMID: 34311198 DOI: 10.1016/j.colsurfb.2021.111990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022]
Abstract
Avermectin (AVM) is a biopesticide with low toxicity and high activity, but has limited use due to its poor water solubility and easy decomposition. A delivery system that can stabilize this biopesticide can play a significant role for improving its biological activity. Herein, water-dispersible functionalized polysuccinimide nanoparticles (PAD) were prepared by a ring-opening reaction and subsequently used to encapsulate AVM via self-assembly to form AVM@PAD nanoparticles with a loading ratio of 10.04 %. The half-life under UV radiation (300 W) of AVM@PAD was three times higher than that of free AVM, demonstrating the excellent protective ability of PAD. In addition, AVM@PAD nanoparticles could sustain the release of AVM for 70 h with a cumulative release rate of 70 %. AVM@PAD nanoparticles also showed a pH-responsive release, and their maximum cumulative release rate was at neutral pH. Moreover, the median lethal concentration (LC50) value of AVM@PAD with respect to Plutella xylostella was 34.50 mg/L, while that of free AVM was 56.05 mg/L. These results showed that the AVM@PAD nanoparticles can potentially and effectively promote drug stability and biological activity in agriculture.
Collapse
Affiliation(s)
- Shaochun Su
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Long Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Li Hao
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Huayao Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Xinhua Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, 525000, People's Republic of China.
| | - Hongjun Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China.
| |
Collapse
|
12
|
Chen L, Lin Y, Zhou H, Hao L, Chen H, Zhou X. A stable polyamine-modified zein-based nanoformulation with high foliar affinity and lowered toxicity for sustained avermectin release. PEST MANAGEMENT SCIENCE 2021; 77:3300-3312. [PMID: 33763979 DOI: 10.1002/ps.6374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A large amount of pesticides that are not deposited on desired locations due to drift and rolling, endangering the ecological environment and human health. Therefore, it is urgent to develop environmentally friendly and foliar affinity formulations. The design and construction of pesticide nano-delivery system is considered to be an effective way to solve this problem. RESULTS In this research, polyamine-modified zein (AM-zein) was synthesized by incorporating ethylenediamine-terminated polyethyleneimine into zein to improve its stability as a nanocarrier, enhance electrostatic force between the carrier and pesticides and plant foliage. Avermectin (AVM)-loaded nanoparticles, containing a high positive charge, were prepared by the anti-solvent method using AM-zein as carrier. The nanoparticles can be stored for 30 days without any significant change in the particle size and stably dispersed at pH 5-9. Compared to the commercial emulsifiable concentrate (EC), nanoparticles dispersions exhibited better leaf affinity, and the retention of dispersion increased from 7.82 to 13.86 mg/cm2 . Interestingly, we have discovered for the first time that the ultraviolet (UV) barrier effect of zein increases while prolonging the UV exposure time; 30.47% of the encapsulated AVM remained intact after exposure to UV for 60 min, compared to only 17.13% for the EC. Insecticidal activity of AVM nanoparticles did not improve compared to EC, but they demonstrated significantly lower toxicity against zebrafish. CONCLUSION This research opens up a new idea for improving the stability of zein nanoparticles, providing a novel path to deliver pesticides efficiently and eco-friendly. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Yuanxiong Lin
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Hongjun Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Li Hao
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Huayao Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Xinhua Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, P. R. China
| |
Collapse
|