1
|
Jia H, Xia R, Zhang R, Liang G, Zhuang Y, Zhou Y, Li D, Wang F. Transcriptome analysis highlights the influence of temperature on hydrolase and traps in nematode-trapping fungi. Front Microbiol 2024; 15:1384459. [PMID: 38774504 PMCID: PMC11106486 DOI: 10.3389/fmicb.2024.1384459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
Pine wilt disease caused by Bursaphelenchus xylophilus poses a serious threat to the economic and ecological value of forestry. Nematode trapping fungi trap and kill nematodes using specialized trapping devices, which are highly efficient and non-toxic to the environment, and are very promising for use as biological control agents. In this study, we isolated several nematode-trapping fungi from various regions and screened three for their high nematocidal efficiency. However, the effectiveness of these fungi as nematicides is notably influenced by temperature and exhibits different morphologies in response to temperature fluctuations, which are categorized as "NA," "thin," "dense," and "sparse." The trend of trap formation with temperature was consistent with the trend of nematocidal efficiency with temperature. Both of which initially increased and then decreased with increasing temperature. Among them, Arthrobotrys cladodes exhibited the highest level of nematocidal activity and trap formation among the tested species. Transcriptome data were collected from A. cladodes with various trap morphologies. Hydrolase activity was significantly enriched according to GO and KEGG enrichment analyses. Eight genes related to hydrolases were found to be consistent with the trend of trap morphology with temperature. Weighted gene co-expression analysis and the Cytoscape network revealed that these 8 genes are associated with either mitosis or autophagy. This suggests that they contribute to the formation of "dense" structures in nematode-trapping fungi. One of these genes is the serine protein hydrolase gene involved in autophagy. This study reveals a potentially critical role for hydrolases in trap formation and nematocidal efficiency. And presents a model where temperature affects trap formation and nematocidal efficiency by influencing the serine protease prb1 involved in the autophagy process.
Collapse
Affiliation(s)
- Hanqi Jia
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Xia
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ruizhi Zhang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Guanjun Liang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuting Zhuang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Yantao Zhou
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Danlei Li
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Feng Wang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Pérez-Anzúrez G, Mendoza-de Gives P, Olmedo-Juárez A, López-Arellano ME, Bautista-García GA, Ocampo-Gutiérrez AY, von Son-de Fernex E, Alonso-Díaz MÁ, Delgado-Núñez EJ, Paz-Silva A. First Record of Flavocillium subprimulinum (Cordycipitaceae, Hypocreales) in Mexico: Morphological and Molecular Characterisation, Nematocidal Activity of Its Liquid Culture Filtrates against Haemonchus contortus and Protease Activity. J Fungi (Basel) 2024; 10:56. [PMID: 38248965 PMCID: PMC10817658 DOI: 10.3390/jof10010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
This is the first record of the fungus Flavocillium subprimulinum in Mexico. The isolate was taxonomically characterised and cultured in potato dextrose broth (PDB), Czapek-Dox broth (CzDoxB), and sweet potato dextrose broth (SPDB) to obtain its filtrates (FLCF). The nematocidal activity (NA) of three FLCF concentrations was assessed against Haemonchus contortus L3. Protease activity (PA) was assessed with SDS-PAGE, followed by a zymogram. The NA of the FLCF reached 94.43% in PDB and 95.82% in CzDoxB, respectively, at 100 mg/mL. Lower mortality (64%) was found in SPDB at 100 mg/mL. SDS-PAGE showed bands (in PBS) of ~25, ~40, and ~55 kDa. The zymogram showed protein bands (PBs) with PA in the media, including PBs of ~14, ~40, and ~55 kDa. This study establishes the basis for exploring the potential use of this fungus against H. contortus, which is considered the most pathogenic parasite affecting lambs.
Collapse
Affiliation(s)
- Gustavo Pérez-Anzúrez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock-Ministry of Agriculture and Rural Development, (INIFAP-SADER), Jiutepec 62550, Mexico; (G.P.-A.); (A.O.-J.); (G.A.B.-G.)
- Production Sciences and Animal Health, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Coyoacán, Ciudad de México 04510, Mexico
| | - Pedro Mendoza-de Gives
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock-Ministry of Agriculture and Rural Development, (INIFAP-SADER), Jiutepec 62550, Mexico; (G.P.-A.); (A.O.-J.); (G.A.B.-G.)
| | - Agustín Olmedo-Juárez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock-Ministry of Agriculture and Rural Development, (INIFAP-SADER), Jiutepec 62550, Mexico; (G.P.-A.); (A.O.-J.); (G.A.B.-G.)
| | - María Eugenia López-Arellano
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock-Ministry of Agriculture and Rural Development, (INIFAP-SADER), Jiutepec 62550, Mexico; (G.P.-A.); (A.O.-J.); (G.A.B.-G.)
| | - Génesis Andrea Bautista-García
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock-Ministry of Agriculture and Rural Development, (INIFAP-SADER), Jiutepec 62550, Mexico; (G.P.-A.); (A.O.-J.); (G.A.B.-G.)
| | - Ana Yuridia Ocampo-Gutiérrez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock-Ministry of Agriculture and Rural Development, (INIFAP-SADER), Jiutepec 62550, Mexico; (G.P.-A.); (A.O.-J.); (G.A.B.-G.)
| | - Elke von Son-de Fernex
- Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre 93600, Mexico; (E.v.S.-d.F.); (M.Á.A.-D.)
| | - Miguel Ángel Alonso-Díaz
- Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre 93600, Mexico; (E.v.S.-d.F.); (M.Á.A.-D.)
| | - Edgar Jesús Delgado-Núñez
- Faculty of Agricultural, Livestock and Environmental Sciences, Autonomous University of the State of Guerrero, Iguala de la Independencia 40040, Mexico
| | - Adolfo Paz-Silva
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27142 Lugo, Spain;
| |
Collapse
|
3
|
Hao X, Chen J, Li Y, Liu X, Li Y, Wang B, Cao J, Gu Y, Ma W, Ma L. Molecular Defense Response of Bursaphelenchus xylophilus to the Nematophagous Fungus Arthrobotrys robusta. Cells 2023; 12:cells12040543. [PMID: 36831210 PMCID: PMC9953903 DOI: 10.3390/cells12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Bursaphelenchus xylophilus causes pine wilt disease, which poses a serious threat to forestry ecology around the world. Microorganisms are environmentally friendly alternatives to the use of chemical nematicides to control B. xylophilus in a sustainable way. In this study, we isolated a nematophagous fungus-Arthrobotrys robusta-from the xylem of diseased Pinus massoniana. The nematophagous activity of A. robusta against the PWNs was observed after just 6 h. We found that B. xylophilus entered the trap of A. robusta at 24 h, and the nervous system and immunological response of B. xylophilus were stimulated by metabolites that A. robusta produced. At 30 h of exposure to A. robusta, B. xylophilus exhibited significant constriction, and we were able to identify xenobiotics. Bursaphelenchus xylophilus activated xenobiotic metabolism, which expelled the xenobiotics from their bodies, by providing energy through lipid metabolism. When PWNs were exposed to A. robusta for 36 h, lysosomal and autophagy-related genes were activated, and the bodies of the nematodes underwent disintegration. Moreover, a gene co-expression pattern network was constructed by WGCNA and Cytoscape. The gene co-expression pattern network suggested that metabolic processes, developmental processes, detoxification, biological regulation, and signaling were influential when the B. xylophilus specimens were exposed to A. robusta. Additionally, bZIP transcription factors, ankyrin, ATPases, innexin, major facilitator, and cytochrome P450 played critical roles in the network. This study proposes a model in which mobility improved whenever B. xylophilus entered the traps of A. robusta. The model will provide a solid foundation with which to understand the molecular and evolutionary mechanisms underlying interactions between nematodes and nematophagous fungi. Taken together, these findings contribute in several ways to our understanding of B. xylophilus exposed to microorganisms and provide a basis for establishing an environmentally friendly prevention and control strategy.
Collapse
Affiliation(s)
- Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Xuefeng Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Hangzhou 310028, China
| | - Jingxin Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yaru Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
4
|
Roles of the Fungal-Specific Lysine Biosynthetic Pathway in the Nematode-Trapping Fungus Arthrobotrys oligospora Identified through Metabolomics Analyses. J Fungi (Basel) 2023; 9:jof9020206. [PMID: 36836320 PMCID: PMC9963897 DOI: 10.3390/jof9020206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In higher fungi, lysine is biosynthesized via the α-aminoadipate (AAA) pathway, which differs from plants, bacteria, and lower fungi. The differences offer a unique opportunity to develop a molecular regulatory strategy for the biological control of plant parasitic nematodes, based on nematode-trapping fungi. In this study, in the nematode-trapping fungus model Arthrobotrys oligospora, we characterized the core gene in the AAA pathway, encoding α-aminoadipate reductase (Aoaar), via sequence analyses and through comparing the growth, and biochemical and global metabolic profiles of the wild-type and Aoaar knockout strains. Aoaar not only has α-aminoadipic acid reductase activity, which serves fungal L-lysine biosynthesis, but it also is a core gene of the non-ribosomal peptides biosynthetic gene cluster. Compared with WT, the growth rate, conidial production, number of predation rings formed, and nematode feeding rate of the ΔAoaar strain were decreased by 40-60%, 36%, 32%, and 52%, respectively. Amino acid metabolism, the biosynthesis of peptides and analogues, phenylpropanoid and polyketide biosynthesis, and lipid metabolism and carbon metabolism were metabolically reprogrammed in the ΔAoaar strains. The disruption of Aoaar perturbed the biosynthesis of intermediates in the lysine metabolism pathway, then reprogrammed amino acid and amino acid-related secondary metabolism, and finally, it impeded the growth and nematocidal ability of A. oligospora. This study provides an important reference for uncovering the role of amino acid-related primary and secondary metabolism in nematode capture by nematode-trapping fungi, and confirms the feasibility of Aoarr as a molecular target to regulate nematode-trapping fungi to biocontrol nematodes.
Collapse
|
5
|
Abstract
Nematode-trapping fungi (NTF) are the majority of carnivorous microbes to capture nematodes through diverse and sophisticated trapping organs derived from hyphae. They can adopt carnivorous lifestyles in addition to saprophytism to obtain extra-nutrition from nematodes. As a special group of fungi, the NTF are not only excellent model organism for studying lifestyle transition of fungi but also natural resources of exploring biological control of nematodes. However, the carnivorous mechanism of NTF remains poorly understood. Nowadays, the omics studies of NTF have provided numerous genes and pathways that are associated with the phenotypes of carnivorous traits, which need molecular tools to verify. Here, we review the development and progress of gene manipulation tools in NTF, including methodology and strategy of transformation, random gene mutagenesis methods and target gene mutagenesis methods. The principle and practical approach for each method was summarized and discussed, and the basic operational flow for each tool was described. This paper offers a clear reference and instruction for researchers who work on NTF as well as other group of fungi.
Collapse
Affiliation(s)
- Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Chen YH, Zhang LL, Wang LJ, Yue XT, Wu QF, Jiang Y, Zhang KQ, Niu XM. Acetylation of Sesquiterpenyl Epoxy-Cyclohexenoids Regulates Fungal Growth, Stress Resistance, Endocytosis, and Pathogenicity of Nematode-Trapping Fungus Arthrobotrys oligospora via Metabolism and Transcription. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6145-6155. [PMID: 35562189 DOI: 10.1021/acs.jafc.2c01914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sesquiterpenyl epoxy-cyclohexenoids (SECs) that depend on a polyketide synthase-terpenoid synthase (PKS-TPS) pathway are widely distributed in plant pathogenic fungi. However, the biosynthesis and function of the acetylated SECs still remained cryptic. Here, we identified that AOL_s00215g 273 (273) was responsible for the acetylation of SECs in Arthrobotrys oligospora via the construction of Δ273, in which the acetylated SECs were absent and major antibacterial nonacetylated SECs accumulated. Mutant Δ273 displayed increased trap formation, and nematicidal and antibacterial activities but decreased fungal growth and soil colonization. Glutamine, a key precursor for NH3 as a trap inducer, was highly accumulated, and biologically active phenylpropanoids and antibiotics were highly enriched in Δ273. The decreased endocytosis and increased autophagosomes, with the most upregulated genes involved in maintaining DNA and transcriptional stability and pathways related to coronavirus disease and exosome, suggested that lack of 273 might result in increased virus infection and the acetylation of SECs played a key role in fungal diverse antagonistic ability.
Collapse
Affiliation(s)
- Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Long-Long Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Li-Jun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu-Tong Yue
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Qun-Fu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Yang Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xue-Mei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
7
|
Zhu MC, Li XM, Zhao N, Yang L, Zhang KQ, Yang JK. Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi. J Fungi (Basel) 2022; 8:jof8040406. [PMID: 35448637 PMCID: PMC9031305 DOI: 10.3390/jof8040406] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023] Open
Abstract
Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called “traps” to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle. With the development of gene knockout and multiple omics such as genomics, transcriptomics, and metabolomics, increasing studies have tried to investigate the regulation mechanism of trap formation in NT fungi. This review summarizes the potential regulatory mechanism of trap formation in NT fungi based on the latest findings in this field. Signaling pathways have been confirmed to play an especially vital role in trap formation based on phenotypes of various mutants and multi-omics analysis, and the involvement of small molecule compounds, woronin body, peroxisome, autophagy, and pH-sensing receptors in the formation of traps are also discussed. In addition, we also highlight the research focus for elucidating the mechanism underlying trap formation of NT fungi in the future.
Collapse
|
8
|
Yu X, Hu X, Pop M, Wernet N, Kirschhöfer F, Brenner-Weiß G, Keller J, Bunzel M, Fischer R. Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nat Commun 2021; 12:5462. [PMID: 34526503 PMCID: PMC8443565 DOI: 10.1038/s41467-021-25535-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Salicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation. The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes.
Collapse
Affiliation(s)
- Xi Yu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xiaodi Hu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Maria Pop
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Nicole Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Frank Kirschhöfer
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Gerald Brenner-Weiß
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Julia Keller
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Mirko Bunzel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
9
|
Pleiotropic roles of Ras GTPases in the nematode-trapping fungus Arthrobotrys oligospora identified through multi-omics analyses. iScience 2021; 24:102820. [PMID: 34337364 PMCID: PMC8313493 DOI: 10.1016/j.isci.2021.102820] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The nematode-trapping fungi are ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a representative species of the same, producing traps for nematode predation. Here, three orthologous Ras GTPases (Ras2, Ras3, and Rheb) were characterized in A. oligospora. Our results indicate that they play pleiotropic roles in regulating the mycelial growth, conidiation, stress resistance, and pathogenicity of A. oligospora. Furthermore, deletion of Aoras2 and Aorheb significantly affected the mitochondrial activity, reactive oxygen species levels, lipid storage, and autophagy. Transcriptome analyses of ΔAoras2 mutant revealed that many repressed genes were associated with signal transduction, energy production, and carbohydrate transport and metabolism. Moreover, metabolic profile analyses showed that AoRas2 and AoRheb affect the biosynthesis of secondary metabolites in A. oligospora. Collectively, these findings provide an in-depth insight into the essential roles of Ras GTPases in vegetative growth, development, and pathogenicity and highlight their importance in the lifestyle switch of the nematode-trapping fungi. Ras GTPases play a multifunctional role in the lifestyle switch of A. oligospora Ras GTPases affect multiple cellular processes, including mitochondrial activity AoRas2 plays a key role in regulating global gene expression and nematode predation AoRas2 and AoRheb significantly affect the biosynthesis of secondary metabolites
Collapse
|
10
|
He ZQ, Wang LJ, Wang YJ, Chen YH, Wen Y, Zhang KQ, Niu XM. Polyketide Synthase-Terpenoid Synthase Hybrid Pathway Regulation of Trap Formation through Ammonia Metabolism Controls Soil Colonization of Predominant Nematode-Trapping Fungus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4464-4479. [PMID: 33823587 DOI: 10.1021/acs.jafc.1c00771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyketide synthase-terpenoid synthase (PKS-TPS) hybrid pathways for biosynthesis of unique sesquiterpenyl epoxy-cyclohexenoids (SECs) have been found to be widely distributed in plant pathogenic fungi. However, the natural and ecological functions of these pathways and their metabolites still remain cryptic. In this study, the whole PKS-TPS hybrid pathway in the predominant nematode-trapping fungus Arthrobotrys oligospora was first proposed according to all the intermediates and their derivatives from all the A. oligospora mutants with a deficiency in each gene involved in SEC biosynthesis. Most mutants displayed significantly increased trap formation which was correlated with alteration of the ammonia level. Further analysis revealed that the main metabolites involved in ammonia metabolism were largely increased in most mutants. However, significantly retarded colonization in soil were observed in most mutants compared to the wild-type strain due to significantly decreased antibacterial activities. Our results suggested that A. oligospora used the PKS-TPS hybrid pathway for fungal soil colonization via decreasing fungal nematode-capturing ability. This also provided solid evidence that boosting fungal colonization in soil was the secondary metabolite whose biosynthesis depended on a PKS-TPS hybrid pathway.
Collapse
Affiliation(s)
- Zhi-Qiang He
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Li-Jun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yu-Jing Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ya Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xue-Mei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| |
Collapse
|