1
|
Gao L, Li Y, Yang S, Bao Y, Luo T, Wang J. Effects of an inoculation dose of Issatchenkia terricola WJL-G4 on physicochemical properties, active substances, and antioxidant capacity of black, red, and white currant juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6405-6416. [PMID: 38497362 DOI: 10.1002/jsfa.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Due to the high level of organic acids - primarily citric acid - black, red, and white currants have an excessively sour taste, making taste adjustment during processing challenging. This study investigated and evaluated the effects of an inoculation dose of the acid-reducing yeast Issatchenkia terricola WJL-G4 on several aspect such as physicochemical properties, chromaticity, active substances, and antioxidant capacity. A sensory evaluation was also conducted. RESULTS The results indicated that, when the inoculation dose increased from 2% to 12%, the total phenol, total flavonoid, and total anthocyanin content, and antioxidant capacity in currant juice decreased. A low inoculation dose (2-4%) was beneficial for preserving the total phenol and total flavonoid content. Although the levels of most phenolic compounds decreased, the concentrations of caffeic acid, p-coumaric acid, ferulic acid, rutin, and epicatechin were significantly higher than the control after fermentation. Overall acceptability and taste scores of fermented currants improved compared with those of the control group. CONCLUSION This experiment provided an effective solution, with a theoretical basis, to the problems of the sour taste and harsh flavor of currant juice. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liping Gao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Yunhan Li
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Shuo Yang
- College of Life Science, Northeast Forestry University, Harbin, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Yihong Bao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinling Wang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| |
Collapse
|
2
|
Rejdlová A, Vašina M, Lorencová E, Hružík L, Salek RN. Assessment of Different Levels of Blackcurrant Juice and Furcellaran on the Quality of Fermented Whey-Based Beverages Using Rheological and Mechanical Vibration Damping Techniques. Foods 2024; 13:1855. [PMID: 38928797 PMCID: PMC11202754 DOI: 10.3390/foods13121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
In the current study, fermented whey-based beverage models with different levels of blackcurrant juice (0; 10; 20; 100% (w/w)) and furcellaran (0.25% and 0.50% (w/w)) were produced and evaluated. Physicochemical, rheological, mechanical vibration damping, and sensory analyses were performed. During fermentation (48 h), the values of pH, density, and total soluble solids decreased. On the other hand, the ethanol content during fermentation increased up to a final content in the range of 0.92-4.86% (v/v). The addition of furcellaran was effective in terms of sediment content decrease to a level of 0.25% (w/w). In general, the samples exhibited non-Newtonian pseudoplastic behaviour. The sensory analysis revealed that the sample with a composition of 20% (w/w) blackcurrant juice and 0.50% (w/w) furcellaran received the highest score.
Collapse
Affiliation(s)
- Anita Rejdlová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic; (A.R.); (E.L.); (R.N.S.)
| | - Martin Vašina
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 5669, 760 01 Zlin, Czech Republic
- Department of Hydromechanics and Hydraulic Equipment, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic;
| | - Eva Lorencová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic; (A.R.); (E.L.); (R.N.S.)
| | - Lumír Hružík
- Department of Hydromechanics and Hydraulic Equipment, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic;
| | - Richardos Nikolaos Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic; (A.R.); (E.L.); (R.N.S.)
| |
Collapse
|
3
|
Wang J, Wei BC, Zhai YR, Li KX, Wang CY. Non-volatile and volatile compound changes in blueberry juice inoculated with different lactic acid bacteria strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2587-2596. [PMID: 37984850 DOI: 10.1002/jsfa.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Lactic acid bacteria (LABs) are widely present in foods and affect the flavour of fermented cultures. This study investigates the effects of fermentation with Lactobacillus acidophilus JYLA-16 (La), Lactobacillus plantarum JYLP-375 (Lp), and Lactobacillus rhamnosus JYLR-005 (Lr) on the flavour profile of blueberry juice. RESULTS This study showed that all LABs strains preferentially used glucose rather than fructose as the carbon source during fermentation. Lactic acid was the main fermentation product, reaching 7.76 g L-1 in La-fermented blueberry juice, 5.86 g L-1 in Lp-fermented blueberry juice, and 6.41 g L-1 in Lr-fermented blueberry juice. These strains extensively metabolized quinic acid, whereas oxalic acid metabolism was almost unaffected. Sixty-four volatile compounds were identified using gas chromatography-ion mobility spectrometry (GC-IMS). All fermented blueberry juices exhibited decreased aldehyde levels. Furthermore, fermentation with La was dominated by alcohols, Lp was dominated by esters, and Lr was dominated by ketones. Linear discriminant analysis of the electronic nose and principal component analysis of the GC-IMS data effectively differentiated between unfermented and fermented blueberry juices. CONCLUSION This study informs LABs selection for producing desirable flavours in fermented blueberry juice and provides a theoretical framework for flavour detection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Bo-Cheng Wei
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Yan-Rong Zhai
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Ke-Xin Li
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Chu-Yan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| |
Collapse
|
4
|
Ramires FA, Bavaro AR, D’Antuono I, Linsalata V, D’Amico L, Baruzzi F, Pinto L, Tarantini A, Garbetta A, Cardinali A, Bleve G. Liquid submerged fermentation by selected microbial strains for onion skins valorization and its effects on polyphenols. World J Microbiol Biotechnol 2023; 39:258. [PMID: 37493825 PMCID: PMC10371881 DOI: 10.1007/s11274-023-03708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried out including 94 bacterial and 45 yeast strains from several agri-food and environmental niches to verify their ability to grow on onion skins as unique nutrients source.Red and yellow onion skins were assessed by newly selected starter-driven liquid submerged fermentation assays mainly aimed at the release and modification of polyphenols through microbial activities. Fermented onion skins were also investigated as a inexpensive favourable source of microbial enzymes (amylases, proteases, lipases, esterases, cellulases, xylanases).In red onion skins, the treatment with Lactiplantibacillus plantarum TB 11-32 produced a slight increase of bioactive compounds in terms of total phenolics, whereas with the yeast strain Zygosaccharomyces mrakii CL 30 - 29 the quercetin aglycone content increased of about 25% of the initial raw material.In yellow onion skins inoculated, the highest content of phenolic compounds was detected with the yeast strain Saccharomyces cerevisiae En SC, while quercetin aglycone increased of about 60% of the initial raw material in presence of the bacterial strain L. plantarum C 180 - 34.In conclusion, the proposed microbial pre-treatment method can be a potential strategy to re-use onion skins as a fermentation substrate, and as a first step in the development of a biorefinery process to produce value-added products from onion by-products.
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| | - Anna Rita Bavaro
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Isabella D’Antuono
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Vito Linsalata
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Leone D’Amico
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| | - Federico Baruzzi
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Loris Pinto
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Annamaria Tarantini
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
- University of Bari Aldo Moro, Plant and Food Science Department (Di.S.S.P.A), Soil, Bari, 70126 Italy
| | - Antonella Garbetta
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Angela Cardinali
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Gianluca Bleve
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| |
Collapse
|
5
|
He W, Tian Y, Liu S, Vaateri L, Ma X, Haikonen T, Yang B, Laaksonen O. Comparison of phenolic composition and sensory quality among pear beverages made using Saccharomyces cerevisiae and Torulaspora delbrueckii. Food Chem 2023; 422:136184. [PMID: 37148850 DOI: 10.1016/j.foodchem.2023.136184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/08/2023]
Abstract
The effects of Saccharomyces cerevisiae and Torulaspora delbrueckii on phenolic composition and sensory quality were characterized in the production of alcoholic beverages from selected pear cultivars with diverse biochemical characteristics. The fermentation process generally affected the phenolic composition by increasing the contents of hydroxycinnamic acids and flavan-3-ols and reducing the levels of hydroxybenzoic acids, procyanidins, and flavonols. Although the phenolic compositions and sensory properties of pear beverages depended primarily on pear cultivar selection, the applied yeast strains also played important roles in beverage quality. Fermentation with T. delbrueckii resulted in higher caffeoylquinic acid and quercetin-3-O-glucoside contents, higher rated intensities of 'cooked pear' and 'floral' odors and a sweeter taste than fermentation with S. cerevisiae. Moreover, higher concentrations of hydroxybenzoic acids, hydroxycinnamic acids, and flavonols correlated closely with astringency perception. Applying T. delbrueckii strains and breeding novel pear cultivars are important approaches to produce fermented beverages of high quality.
Collapse
Affiliation(s)
- Wenjia He
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ye Tian
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Shuxun Liu
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Laura Vaateri
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Xueying Ma
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China
| | - Tuuli Haikonen
- Natural Resources Institute Finland (Luke), Production Systems/Horticulture Technologies, Toivonlinnantie 518, FI-21500 Piikkiö, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
6
|
Enhancing antioxidant activity and fragrant profile of low-ethanol kiwi wine via sequential culture of indigenous Zygosaccharomyces rouxii and Saccharomyces cerevisiae. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Effect of sequential fermentation with four non-Saccharomyces and Saccharomyces cerevisiae on nutritional characteristics and flavor profiles of kiwi wines. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Jing X, Zhang N, Zhao L, Zhou J, Wu W, Zhang L, Zhou F. Effect of soaked and fermented raspberry wines on the liver in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Kelanne NM, Siegmund B, Metz T, Yang B, Laaksonen O. Comparison of volatile compounds and sensory profiles of alcoholic black currant (Ribes nigrum) beverages produced with Saccharomyces, Torulaspora, and Metschnikowia yeasts. Food Chem 2022; 370:131049. [PMID: 34520974 DOI: 10.1016/j.foodchem.2021.131049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Black currants (Ribes nigrum) were fermented with Saccharomyces and non-Saccharomyces yeasts without added sugar to yield low-ethanol-content beverages. The effects of yeasts on the volatile compounds and sensory characteristics were analysed by HS-SPME-GC-MS, GC-O, and generic descriptive analysis. Ninety-eight volatile compounds were identified from the black currant juice and fermented beverages. Significant increases in the contents of esters (131 %), higher alcohols (391 %), and fatty acids (not present in juice sample) compared to initial juice were observed depending on the yeasts used. GC-O analysis revealed the higher impact of esters on the sensory properties of Saccharomyces bayanus-fermented beverage compared to the Torulaspora delbrueckii-fermented beverage. In the sensory evaluation, non-Saccharomyces yeasts resulted in a higher 'black currant odour'. However, all beverages were intensely sour, which can be a significant challenge in the development of alcoholic berry beverages.
Collapse
Affiliation(s)
- Niina M Kelanne
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Barbara Siegmund
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/II, A8010 Graz, Austria
| | - Tapio Metz
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
10
|
Liu S, Laaksonen O, Li P, Gu Q, Yang B. Use of Non- Saccharomyces Yeasts in Berry Wine Production: Inspiration from Their Applications in Winemaking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:736-750. [PMID: 35019274 DOI: 10.1021/acs.jafc.1c07302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although berries (nongrape) are rich in health-promoting bioactive compounds, and their consumption is associated with a lower risk of diverse chronic diseases, only a fraction of the annual yield of berries is exploited and consumed. Development of berry wines presents an approach to increase the utilization of berries. Alcoholic fermentation is a complex process driven by yeasts, which influence key properties of wine diversification and quality. In winemaking, non-Saccharomyces yeasts were traditionally considered as undesired microorganisms because of their high production of metabolites with negative connotations. However, there has been a recent and growing interest in the application of non-Saccharomyces yeast in many innovative wineries. Numerous studies have demonstrated the potential of these yeasts to improve properties of wine as an alternative or complement to Saccharomyces cerevisiae. The broad use of non-Saccharomyces yeasts in winemaking provides a promising picture of these unconventional yeasts in berry wine production, which can be considered as a novel biotechnological approach for creating value-added berry products for the global market. This review provides an overview of the current use of non-Saccharomyces yeasts in winemaking and their applicative perspective in berry wine production.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
11
|
Zhang T, Shen Y, Zhang S, Xie Z, Cheng X, Li W, Zhong C. Monosaccharide removal and effects of
Komagataeibacter xylinus
fermentation on antioxidant capacity and flavor profile of Chinese wolfberry juice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tianzhen Zhang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin PR China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education) Tianjin University of Science and Technology Tianjin PR China
| | - Yuqing Shen
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin PR China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education) Tianjin University of Science and Technology Tianjin PR China
| | - Senjia Zhang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin PR China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education) Tianjin University of Science and Technology Tianjin PR China
| | - Zexiong Xie
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) School of Chemical Engineering and Technology Tianjin University Tianjin PR China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering School of Science Beijing Jiaotong University Beijing PR China
| | - Wenchao Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin PR China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education) Tianjin University of Science and Technology Tianjin PR China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin PR China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education) Tianjin University of Science and Technology Tianjin PR China
| |
Collapse
|
12
|
Wang Z, Dou R, Yang R, Cai K, Li C, Li W. Changes in Phenols, Polysaccharides and Volatile Profiles of Noni ( Morinda citrifolia L.) Juice during Fermentation. Molecules 2021; 26:molecules26092604. [PMID: 33946973 PMCID: PMC8125466 DOI: 10.3390/molecules26092604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/26/2023] Open
Abstract
The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.
Collapse
Affiliation(s)
- Zhulin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Rong Dou
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Kun Cai
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
- Correspondence: ; Tel.: +86-898-6619-8861; Fax: +86-898-6619-3581
| |
Collapse
|