1
|
Huang J, Liu F, Ren R, Deng J, Zhu L, Li H, Cai F, Meng Z, Chen Q, Shi T. QTL Mapping and Candidate Gene Analysis for Starch-Related Traits in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn). Int J Mol Sci 2024; 25:9243. [PMID: 39273191 PMCID: PMC11395678 DOI: 10.3390/ijms25179243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Starch is the main component that determines the yield and quality of Tartary buckwheat. As a quantitative trait, using quantitative trait locus (QTL) mapping to excavate genes associated with starch-related traits is crucial for understanding the genetic mechanisms involved in starch synthesis and molecular breeding of Tartary buckwheat varieties with high-quality starch. Employing a recombinant inbred line population as research material, this study used QTL mapping to investigate the amylose, amylopectin, and total starch contents across four distinct environments. The results identified a total of 20 QTLs spanning six chromosomes, which explained 4.07% to 14.41% of the phenotypic variation. One major QTL cluster containing three stable QTLs governing both amylose and amylopectin content, qClu-4-1, was identified and located in the physical interval of 39.85-43.34 Mbp on chromosome Ft4. Within this cluster, we predicted 239 candidate genes and analyzed their SNP/InDel mutations, expression patterns, and enriched KEGG pathways. Ultimately, five key candidate genes, namely FtPinG0004897100.01, FtPinG0002636200.01, FtPinG0009329200.01, FtPinG0007371600.01, and FtPinG0005109900.01, were highlighted, which are potentially involved in starch synthesis and regulation, paving the way for further investigative studies. This study, for the first time, utilized QTL mapping to detect major QTLs controlling amylose, amylopectin, and total starch contents in Tartary buckwheat. The QTLs and candidate genes would provide valuable insights into the genetic mechanisms underlying starch synthesis and improving starch-related traits of Tartary buckwheat.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Rongrong Ren
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Fang Cai
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Ziye Meng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
2
|
Mateus ARS, Crisafulli C, Cruz Barros S, Pena A, Sanches Silva A. Development and validation of an analytical method based on QuEChERS followed by UHPLC-ToF-MS for the determination of tropane alkaloids in buckwheat ( Fagopyrum esculentum L.) and buckwheat products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:648-663. [PMID: 38635926 DOI: 10.1080/19440049.2024.2339325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
A method was developed for the determination of tropane alkaloids (TAs), including atropine, scopolamine, anisodamine and homatropine in buckwheat and related products. This work presents an optimised methodology based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction procedure followed by ultra-high performance liquid chromatography combined with time-of-flight mass spectrometry for the determination of TAs (atropine, scopolamine, anisodamine and homatropine) in buckwheat samples. The analytical methodology was successfully validated, demonstrating good linearity, low limit of quantification, repeatability (RSDr < 15%), inter-day precision (RSDR < 19%) and recovery (74-113%). Finally, 13 commercial samples of buckwheat were analysed and the results demonstrated that they were in compliance with the current European regulations regarding TAs.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Vila do Conde, Portugal
- Pharmacy Faculty, University of Coimbra, Coimbra, Portugal
- LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, Pharmacy Faculty, University of Coimbra, Coimbra, Portugal
- Animal Science Studies Centre (CECA), ICETA, University of Porto, Porto, Portugal
| | - Carmen Crisafulli
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Vila do Conde, Portugal
| | - Silvia Cruz Barros
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Vila do Conde, Portugal
| | - Angelina Pena
- Pharmacy Faculty, University of Coimbra, Coimbra, Portugal
- Animal Science Studies Centre (CECA), ICETA, University of Porto, Porto, Portugal
| | - Ana Sanches Silva
- Pharmacy Faculty, University of Coimbra, Coimbra, Portugal
- Animal Science Studies Centre (CECA), ICETA, University of Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (Al4AnimalS), Lisbon, Portugal
| |
Collapse
|
3
|
Robles Hernandez MG, Gerlinsky M, Zhang JS, Gänzle MG. Use of Bacillus spp. as beneficial fermentation microbes in baking. Int J Food Microbiol 2024; 416:110646. [PMID: 38457886 DOI: 10.1016/j.ijfoodmicro.2024.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
The development of minimally processed baked goods is dependent on new "clean label" functional ingredients that allow substitution of additives without compromising quality. We investigated the use of fermentation with Bacillus spp. as a novel approach to improve bread quality. Bacillus velezensis FUA2155 and Bacillus amyloliquefaciens Fad WE ferments were prepared using white wheat flour, wheat bran or buckwheat, and were added at a level of 2.5-20 % to bread dough. Ropy spoilage of bread was controlled by sourdough addition at a level of 10 or 20 %. The volume of white wheat bread and wheat bran bread increased by 47.4 and 62.5 % respectively with 2.5 % Bacillus ferments. Bread shelf-life was prolonged by the Bacillus ferment only at higher dosages that also reduced bread volume. The use of unfermented or sourdough fermented buckwheat improved bread volume and delayed mould spoilage. The characterization of water-soluble polysaccharides from sourdoughs and Bacillus ferments revealed that solubilization of arabinoxylans contributed to the increase in volume after fermentation of wheat but not after fermentation of buckwheat. In conclusion, Bacillus fermentation can be used to improve bread quality, adding to the diversity of microbes that are suitable for baking applications.
Collapse
Affiliation(s)
| | - Morgan Gerlinsky
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Justina S Zhang
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| |
Collapse
|
4
|
Vieites-Álvarez Y, Reigosa MJ, Sánchez-Moreiras AM. A decade of advances in the study of buckwheat for organic farming and agroecology (2013-2023). FRONTIERS IN PLANT SCIENCE 2024; 15:1354672. [PMID: 38510443 PMCID: PMC10950947 DOI: 10.3389/fpls.2024.1354672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
During the last decade, research has shown the environment and human health benefits of growing buckwheat (Fagopyrum spp.). This comprehensive review aims to summarize the major advancements made in the study of buckwheat from 2013 to 2023, focusing on its agronomic characteristics, nutritional value, and potential applications in sustainable agriculture. The review examines the diverse applications of buckwheat in organic and agroecological farming systems, and discusses the ability of buckwheat to control weeds through allelopathy, competition, and other sustainable farming methods, such as crop rotation, intercropping and green manure, while improving soil health and biodiversity. The review also explores the nutritional value of buckwheat. It delves into the composition of buckwheat grains, emphasizing their high protein content, and the presence of essential amino acids and valuable micronutrients, which is linked to health benefits such as lowering cholesterol levels, controlling diabetes and acting against different types of cancer, among others. Finally, the review concludes by highlighting the gaps in current knowledge, and proposing future research directions to further optimize buckwheat production in organic or agroecological farming systems. It emphasizes the need for interdisciplinary collaboration, and the integration of traditional knowledge with modern scientific approaches to unlock the full potential of buckwheat as a sustainable crop.
Collapse
Affiliation(s)
- Yedra Vieites-Álvarez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Manuel J. Reigosa
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Adela M. Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| |
Collapse
|
5
|
Gonfa T, Temesgen A, Kiros T, Muthusaravanan S, Erba Urgessa O, Teklu T. Phytochemical Investigation and in vitro Antimicrobial and Antioxidant Activities Evaluation of Erianthemum aethiopicum Wiens and Polhill. J Exp Pharmacol 2024; 16:71-80. [PMID: 38371428 PMCID: PMC10874236 DOI: 10.2147/jep.s452098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Background Erianthemum aethiopicum Wiens and Polhill (Loranthaceae) is a parasitic plant native to north eastern Africa and Ethiopia. In Ethiopia, it is traditionally used to treat breast swelling, mastitis, morning illnesses and vomiting. Objective This study aimed to screen the main phytochemical constituents; determine the total amounts of phenolics, flavonoids, and tannins; and evaluate the antimicrobial (against Escherichia coli, Staphylococcus sciuri, Candida glaebosa and Cryptococcus albidus) and antioxidant (against DPPH radical and ferric ion) activities of E. aethiopicum leaves extracts. Methods Powdered E. aethiopicum leaves were macerated using n-hexane, chloroform, ethyl acetate, ethanol, and methanol. All crude extracts were qualitatively screened for phytochemical identification. The total phenolic, flavonoid, and condensed tannin contents of the chloroform, ethanol, and methanol extracts were determined by UV-Vis spectrophotometry. The n-hexane, chloroform, and methanol extracts were evaluated for their antimicrobial activity against the aforementioned microbes using agar disc diffusion and broth micro-dilution techniques. Chloroform, ethanol, and methanol extracts were also evaluated for antioxidant activity by DPPH and ferric ion reduction antioxidant power (FRAP) assays. Results Methanol (17.56 ± 16%) and ethanol (16.45 ± 19%) showed better extraction efficiency. Flavonoids, polyphenols, tannins, terpenoids, saponins, and sterols were detected in all extracts. The highest total content of phenolics (22.63 ± 0.69 mgGAE/gDCE), flavonoids (5.38 ± 0.52 mgCE/gDCE) and tannins (39.18 ± 38 mg CE/g DCE), as milligram of gallic acid and catechin per gram of dried crude extract, were recorded in the methanolic extract. The methanolic extract also presented best anti -DPPH strength (IC50, 4.31 μg/mL) and ferric ion reduction power (absorbance of 0.71) though found weak compared to the ascorbic acid (IC50 of 0.49 μg/mL and absorbance of 0.93, respectively). Conclusion All evaluated extracts displayed antifungal activity against both Cryptococcus albidus and Candida glaebosa strains (minimum inhibitory concentration values of 12.5-25 mg/mL), whereas they were found to have negligible activity against all tested bacterial strains. This report provides preliminary information for further phytochemical investigation of Erianthemum aethiopicum to isolate potential antioxidant and antifungal compounds.
Collapse
Affiliation(s)
- Teshome Gonfa
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Ayalew Temesgen
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Tsegu Kiros
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
| | | | - Olyad Erba Urgessa
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Tadele Teklu
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
| |
Collapse
|
6
|
Wiśniewska M, Mańkowski DR, Fraś A. Variations in chemical composition of common buckwheat (Fagopyrum esculentum Moench) as a result of different environmental conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:286-294. [PMID: 37556207 DOI: 10.1002/jsfa.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Common buckwheat (Fagopyrum esculentum Moench) is a pseudo cereal that is gaining interest in the world. The chemical profile of common buckwheat determines its high nutritional and health-promoting value. The accumulation of these valuable ingredients depends on many factors, such as: variety, location of cultivation and related weather and agrotechnical conditions. Due to the growing interest in common buckwheat as a natural plant material for food production, it is important to know the factors affecting the quantitative and qualitative composition of its grains. The aim of the research was to determine the effect of the genotype (G), environment (E) and G × E interaction on the content of nutrients (protein, starch, ash, lipids) and bioactive components [dietary fiber (DF), total phenolic content (TPC)] in the common buckwheat grains. The study covered four cultivars grown in three locations for three consecutive vegetation seasons (2016/2017, 2017/2018, 2018/2019). RESULTS Based on the obtained results, a significant influence of the environment and G × E interaction on the content of the studied parameters was found. The greatest impact on the diversity of the content of nutrients had environmental conditions, which in the case of protein and ash determined these features in more than 80%, and in the case of starch, 70%. With regard to bioactive compounds, the greatest influence of the environment was observed for the amount of TPC (78%), lignin (51%) and the DF complex (56%). CONCLUSION The obtained results are useful for breeders working on expanding the pool of common buckwheat genotypes, stable in changing environmental conditions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Wiśniewska
- Plant Breeding and Acclimatization Institute-National Research Institute, Błonie, Poland
| | - Dariusz R Mańkowski
- Plant Breeding and Acclimatization Institute-National Research Institute, Błonie, Poland
| | - Anna Fraś
- Plant Breeding and Acclimatization Institute-National Research Institute, Błonie, Poland
| |
Collapse
|
7
|
Wang P, Li Q, Wei J, Zeng S, Sun B, Sun W, Ma P. Germplasm Resources and Metabolite Marker Screening of High-Flavonoid Tartary Buckwheat ( Fagopyrum tataricum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20131-20145. [PMID: 38063436 DOI: 10.1021/acs.jafc.3c06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tartary buckwheat is an annual minor cereal crop with a variety of secondary metabolites, endowing it with a high nutritional and medicinal value. Flavonoids constitute the primary compounds of Tartary buckwheat. Recently, metabolomics, as an adjunct breeding method, has been increasingly employed in crop research. This study explores the correlation between the total flavonoid content (TFC) and antioxidant capacity in 167 Tartary buckwheat varieties. Ten Tartary buckwheat varieties with significant differences in flavonoid content and antioxidant capacity were selected by cluster analysis. With the use of liquid chromatography-mass spectrometry, 58 flavonoid compounds were identified, namely, 42 flavonols, 10 flavanols, 3 flavanones, 1 isoflavone, 1 anthocyanidin, and 1 proanthocyanidin. Different samples were clearly separated by employing principal component analysis and partial least-squares discriminant analysis. Eight differential flavonoid compounds were further selected through volcano plots and variable importance in projection. Differential metabolites were highly correlated with TFC and antioxidant capacity. Finally, metabolic markers of kaempferol-3-O-hexoside, kaempferol-7-O-glucoside, and naringenin-O-hexoside were determined by the random forest model. The findings provide a basis for the selection and identification of Tartary buckwheat varieties with high flavonoid content and strong antioxidant activity.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Qian Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Sijia Zeng
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Boshi Sun
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Yang X, Zhu A, Li X, He S, Zhu Y, Anyan W, Qin L, Zeng H. Effects of extracted oil of fermented Tartary buckwheat on lipid-lowering, inflammation modulation, and gut microbial regulation in mice. Food Funct 2023; 14:10814-10828. [PMID: 37982812 DOI: 10.1039/d3fo04117d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
This study investigated the composition of Tartary buckwheat oil fermented by Monascus purpureus and extracted under supercritical CO2 conditions (FTBO) and evaluated its effects on lipid-lowering, inflammation modulation, and gut microbial regulation in mice that were fed a high-fat diet (MOD). Compared with the raw oil (TBO), the γ-oryzanol content reached 27.09 mg g-1; the monounsaturated fatty acid (MUFA) content (such as oleic acid and palmitic acid) was elevated; and the antioxidant capacities of DPPH, ABTS, and hydroxyl were improved in FTBO (p < 0.0001). Then, supplementation with FTBO had a remarkable effect on reducing the body weight and visceral obesity as well as alleviating hyperglycemia, dyslipidemia, inflammatory reactions, and liver damage. The TC, TG, and LDL-C levels in the liver and plasma were reduced, and the HDL-C levels in the liver were increased (p < 0.05). In particular, the high-dose group (FTBOH) exhibited the most significant effect on reducing the pro-inflammatory cytokines ET, TNF-α, IL-1β, and IL-6 in the liver, which were 18.85, 570.12, 50.47, and 26.22 pg mL-1, respectively (p < 0.05). Moreover, FTBO reversed intestinal disorders and increased the intestinal microbial diversity and richness. The relative abundance of beneficial bacteria, such as Bifidobacterium, Lactobacillus, Limosilactobacillus, and Lachnospiraceae_UCG-006, were increased, and the relative abundance of the harmful bacteria Staphylococcus and Lachnoclostridium were reduced. In summary, FTBO has potential applications as a dietary supplement or dietary modifier in lowering blood lipids, modulating immune activity, and reversing intestinal disorders. This study provides reference guidance for the subsequent industrialization and development of Tartary buckwheat, the extension of the industrial chain, the development of new products, and the extraction of functional components.
Collapse
Affiliation(s)
- Xin Yang
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Anran Zhu
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
- Guizhou Xi Jiu Co., Ltd, Zunyi, 564622, China
| | - Xuanchen Li
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Shengling He
- Guizhou Province Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang, 550025, China
| | - Wen Anyan
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Likang Qin
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Haiying Zeng
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Giovanelli G, Bresciani A, Benedetti S, Chiodaroli G, Ratti S, Buratti S, Marti A. Reformulating Couscous with Sprouted Buckwheat: Physico-Chemical Properties and Sensory Characteristics Assessed by E-Senses. Foods 2023; 12:3578. [PMID: 37835230 PMCID: PMC10572695 DOI: 10.3390/foods12193578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In the frame of reformulating food products for valorizing underutilized crops and enhancing both the nutritional and sensory characteristics of traditional foods, this study explored the potential impact of sprouting on some features of couscous prepared from buckwheat. Specifically, the impact of two sprouting times (48 h and 72 h) and two enrichment levels (25% and 50%) on physical properties (bulk density, hydration properties), cooking behavior (e.g., texture), chemical features (e.g., total phenolic content, rutin and quercetin), antioxidant activity (DPPH assay), and sensory traits (by means of electronic nose, tongue, and eye) was considered. Results showed that the replacement of 50% of pre-gelatinized buckwheat flour with 72 h-sprouted buckwheat flour resulted in a couscous with a higher content of phenolic compounds (including rutin and quercetin) and antioxidant activity; the related values further increased upon cooking. Moreover, except for the hardness and gumminess that were worsened (i.e., their values increased), cohesiveness and resilience improved in the presence of sprouted buckwheat (i.e., their values increased). Finally, the overall sensory traits improved with the addition of 50% sprouted buckwheat, since both bitterness and astringency decreased in the reformulated couscous.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Buratti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano via G. Celoria 2, 20133 Milan, Italy; (G.G.); (A.B.); (S.B.); (G.C.); (S.R.); (A.M.)
| | | |
Collapse
|
10
|
Lafuente C, Calpe J, Musto L, Nazareth TDM, Dopazo V, Meca G, Luz C. Preparation of Sourdoughs Fermented with Isolated Lactic Acid Bacteria and Characterization of Their Antifungal Properties. Foods 2023; 12:foods12040686. [PMID: 36832761 PMCID: PMC9955050 DOI: 10.3390/foods12040686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Traditional sourdough is obtained using a mixture of flour and water stored at room temperature until acidification. Therefore, adding lactic acid bacteria (LAB) can improve the quality and safety of sourdough bread. Faced with this problem, four drying techniques-freeze-drying, spray-drying, low-temperature drying, and drying at low humidity-have been applied. Our goals were to isolate LAB strains with antifungal potential against Aspergillus and Penicillium fungi. The antifungal capacity was evaluated with agar diffusion, co-culture in overlay agar, and a microdilution susceptibility assay. In addition, the antifungal compounds generated in sourdough were analyzed. As a result, dried sourdoughs were prepared with Lactiplantibacillus plantarum TN10, Lactiplantibacillus plantarum TF2, Pediococcus pentosaceus TF8, Pediococcus acidilactici TE4, and Pediococcus pentosaceus TI6. The minimum fungicidal concentrations ranged from 25 g/L versus P. verrucosum and 100 g/L against A. flavus. A total of 27 volatile organic compounds were produced. Moreover, the lactic acid content reached 26 g/kg of dry product, and the phenyllactic concentration was significantly higher than the control. The P. pentosaceus TI6 exhibited a higher antifungal capacity in vitro and demonstrated a higher production of antifungal compounds compared to the other strains; therefore, further studies will evaluate the impact of this sourdough in bread manufacture.
Collapse
Affiliation(s)
- Carla Lafuente
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Jorge Calpe
- AgrotechUV Incubator, University of Valencia Science Park, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Leonardo Musto
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Tiago de Melo Nazareth
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-963-54-49-59
| | - Victor Dopazo
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giuseppe Meca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Carlos Luz
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
11
|
He Q, Ma D, Li W, Xing L, Zhang H, Wang Y, Du C, Li X, Jia Z, Li X, Liu J, Liu Z, Miao Y, Feng R, Lv Y, Wang M, Lu H, Li X, Xiao Y, Wang R, Liang H, Zhou Q, Zhang L, Liang C, Du H. High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36680412 DOI: 10.1111/jipb.13459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), the two most widely cultivated buckwheat species, differ greatly in flavonoid content and reproductive mode. Here, we report the first high-quality and chromosome-level genome assembly of common buckwheat with 1.2 Gb. Comparative genomic analysis revealed that common buckwheat underwent a burst of long terminal repeat retrotransposons insertion accompanied by numerous large chromosome rearrangements after divergence from Tartary buckwheat. Moreover, multiple gene families involved in stress tolerance and flavonoid biosynthesis such as multidrug and toxic compound extrusion (MATE) and chalcone synthase (CHS) underwent significant expansion in buckwheat, especially in common buckwheat. Integrated multi-omics analysis identified high expression of catechin biosynthesis-related genes in flower and seed in common buckwheat and high expression of rutin biosynthesis-related genes in seed in Tartary buckwheat as being important for the differences in flavonoid type and content between these buckwheat species. We also identified a candidate key rutin-degrading enzyme gene (Ft8.2377) that was highly expressed in Tartary buckwheat seed. In addition, we identified a haplotype-resolved candidate locus containing many genes reportedly associated with the development of flower and pollen, which was potentially related to self-incompatibility in common buckwheat. Our study provides important resources facilitating future functional genomics-related research of flavonoid biosynthesis and self-incompatibility in buckwheat.
Collapse
Affiliation(s)
- Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Dan Ma
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Cailian Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Xiuxiu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianan Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Rui Feng
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yang Lv
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Meijia Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310000, China
| | - Xiaochen Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yao Xiao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hanfei Liang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Lijun Zhang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Kreft I, Germ M, Golob A, Vombergar B, Vollmannová A, Kreft S, Luthar Z. Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum. Molecules 2022; 27:7101. [PMID: 36296694 PMCID: PMC9611693 DOI: 10.3390/molecules27207101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 09/02/2023] Open
Abstract
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin, quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and emodin. Synthesis of protecting substances depends on genetic layout and on the environmental conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative disorders such as Parkinson's disease. During the processing and production of food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main Tartary buckwheat traditional food products are bread, groats, and sprouts.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Role of Tocochromanols in Tolerance of Cereals to Biotic Stresses: Specific Focus on Pathogenic and Toxigenic Fungal Species. Int J Mol Sci 2022; 23:ijms23169303. [PMID: 36012567 PMCID: PMC9408828 DOI: 10.3390/ijms23169303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal pathogens capable of producing mycotoxins are one of the main threats to the cultivation of cereals and the safety of the harvested kernels. Improving the resistance of crops to fungal disease and accumulation of mycotoxins is therefore a crucial issue. Achieving this goal requires a deep understanding of plant defense mechanisms, most of them involving specialized metabolites. However, while numerous studies have addressed the contribution of phenylpropanoids and carotenoids to plant chemical defense, very few have dealt with tocochromanols. Tocochromanols, which encompass tocopherols and tocotrienols and constitute the vitamin E family, are widely distributed in cereal kernels; their biosynthetic pathway has been extensively studied with the aim to enrich plant oils and combat vitamin E deficiency in humans. Here we provide strong assumptions arguing in favor of an involvement of tocochromanols in plant–fungal pathogen interactions. These assumptions are based on both direct effects resulting from their capacity to scavenge reactive oxygen species, including lipid peroxyl radicals, on their potential to inhibit fungal growth and mycotoxin yield, and on more indirect effects mainly based on their role in plant protection against abiotic stresses.
Collapse
|
14
|
Zhou H, Sun F, Lin H, Fan Y, Wang C, Yu D, Liu N, Wu A. Food bioactive compounds with prevention functionalities against fungi and mycotoxins: developments and challenges. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Impact of gelatinization on common (Fagopyrum esculentum) and Tartary (Fagopyrum tataricum) buckwheat: effect on taste and flavor assessed by e-senses in relation to phenolic compounds. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04066-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Aubert L, Quinet M. Comparison of Heat and Drought Stress Responses among Twelve Tartary Buckwheat ( Fagopyrum tataricum) Varieties. PLANTS (BASEL, SWITZERLAND) 2022; 11:1517. [PMID: 35684290 PMCID: PMC9183088 DOI: 10.3390/plants11111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The use of orphan crops could mitigate the effects of climate change and improve the quality of food security. We compared the effects of drought, high temperature, and their combination in 12 varieties of Tartary buckwheat (Fagopyrum tataricum). Plants were grown at 21/19 °C or 28/26 °C under well-watered and water-stressed conditions. Plants were more discriminated according to environmental conditions than variety, with the exception of Islek that was smaller and produced fewer leaves, inflorescences, and seeds than the other varieties. The combination of high temperature and water stress had a stronger negative impact than each stress applied separately. The temperature increase stimulated leaf and flower production while water stress decreased plant height. Leaf area decreased with both temperature and water stress. High temperature hastened the seed initiation but negatively affected seed development such that almost all seeds aborted at 28 °C. At 21 °C, water stress significantly decreased the seed production per plant. At the physiological level, water stress increased the chlorophyll content and temperature increased the transpiration rate under well-watered conditions. High temperature also increased the polyphenol and flavonoid concentrations, mainly in the inflorescences. Altogether, our results showed that water stress and temperature increase in particular negatively affected seed production in F. tataricum.
Collapse
|
17
|
Sun Y, Yao C, Zeng J, Zhang Y, Zhang Y. Eco-friendly deep eutectic solvents skeleton patterned molecularly imprinted polymers for the separation of sinapic acid from agricultural wastes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Kreft I, Germ M, Golob A, Vombergar B, Bonafaccia F, Luthar Z. Impact of Rutin and Other Phenolic Substances on the Digestibility of Buckwheat Grain Metabolites. Int J Mol Sci 2022; 23:3923. [PMID: 35409281 PMCID: PMC8999605 DOI: 10.3390/ijms23073923] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is grown in eastern and central Asia (the Himalayan regions of China, Nepal, Bhutan and India) and in central and eastern Europe (Luxemburg, Germany, Slovenia and Bosnia and Herzegovina). It is known for its high concentration of rutin and other phenolic metabolites. Besides the grain, the other aboveground parts of Tartary buckwheat contain rutin as well. After the mixing of the milled buckwheat products with water, the flavonoid quercetin is obtained in the flour-water mixture, a result of rutin degradation by rutinosidase. Heating by hot water or steam inactivates the rutin-degrading enzymes in buckwheat flour and dough. The low buckwheat protein digestibility is due to the high content of phenolic substances. Phenolic compounds have low absorption after food intake, so, after ingestion, they remain for some time in the gastrointestinal tract. They can act in an inhibitory manner on enzymes, degrading proteins and other food constituents. In common and Tartary buckwheat, the rutin and quercetin complexation with protein and starch molecules has an impact on the in vitro digestibility and the appearance of resistant starch and slowly digestible proteins. Slowly digestible starch and proteins are important for the functional and health-promoting properties of buckwheat products.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia;
| | - Francesco Bonafaccia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| |
Collapse
|
19
|
Li H, Lv Q, Liu A, Wang J, Sun X, Deng J, Chen Q, Wu Q. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum Moench) buckwheat seeds. Food Chem 2022; 371:131125. [PMID: 34563971 DOI: 10.1016/j.foodchem.2021.131125] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
Tartary buckwheat has higher health-promoting value than common buckwheat. However, the related metabolites information except flavonoids is largely deficient. Here, we compared the seed metabolomes of the two species using a UHPLC-QqQ-MS-based metabolomics approach. In total, 722 metabolites were obtained, of which 84 and 78 were identified as the key active ingredients of Traditional Chinese Medicines and the active pharmaceutical ingredients for six major diseases-resistance, respectively. Comparative analysis showed there were obviously difference in metabolic profiles between the two buckwheat species, and further found 61 flavonoids and 94 non-flavonoids metabolites displayed significantly higher contents (≥2 fold) in Tartary buckwheat than in common buckwheat. Our results suggest that Tartary and common buckwheat seeds are rich in metabolites beneficial to human health, and non-flavonoids metabolites also contributed to Tartary buckwheat's higher health-promoting value than common buckwheat. This study provides valuable information for the development of new functional foods of Tartary buckwheat.
Collapse
Affiliation(s)
- Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, PR China.
| | - Qiuyu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, PR China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, PR China
| | - Jiarui Wang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, PR China
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, PR China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, PR China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, PR China.
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China.
| |
Collapse
|
20
|
Koval D, Alishevich K, Sasínová K, Ramešová A, Marhons Š, Nešporová T, Čurda L, Kumherová M, Bárta J, Filip V, Kyselka J. Formation of dihydrophenolic acids and aroma-active volatile phenols by new strains of Limosilactobacillus fermentum. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Luthar Z, Golob A, Germ M, Vombergar B, Kreft I. Tartary Buckwheat in Human Nutrition. PLANTS (BASEL, SWITZERLAND) 2021; 10:700. [PMID: 33916396 PMCID: PMC8066602 DOI: 10.3390/plants10040700] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/29/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) originates in mountain areas of western China, and it is mainly cultivated in China, Bhutan, northern India, Nepal, and central Europe. Tartary buckwheat shows greater cold resistance than common buckwheat, and has traits for drought tolerance. Buckwheat can provide health benefits due to its contents of resistant starch, mineral elements, proteins, and in particular, phenolic substances, which prevent the effects of several chronic human diseases, including hypertension, obesity, cardiovascular diseases, and gallstone formation. The contents of the flavonoids rutin and quercetin are very variable among Tartary buckwheat samples from different origins and parts of the plants. Quercetin is formed after the degradation of rutin by the Tartary buckwheat enzyme rutinosidase, which mainly occurs after grain milling during mixing of the flour with water. High temperature treatments of wet Tartary buckwheat material prevent the conversion of rutin to quercetin.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia;
| | - Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Aubert L, Decamps C, Jacquemin G, Quinet M. Comparison of Plant Morphology, Yield and Nutritional Quality of Fagopyrum esculentum and Fagopyrum tataricum Grown under Field Conditions in Belgium. PLANTS (BASEL, SWITZERLAND) 2021; 10:258. [PMID: 33525666 PMCID: PMC7910852 DOI: 10.3390/plants10020258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/28/2023]
Abstract
Buckwheat is a pseudocereal with high nutritional and nutraceutical properties. Although common buckwheat (Fagopyrum esculentum) is the main cultivated species, Tartary buckwheat (Fagopyrum tataricum) is gaining interest. In this paper, we compared plant growth, yield-related parameters and seed nutritional qualities of two varieties of F. esculentum and F. tataricum under field conditions in Belgium. Fagopyrum esculentum flowered earlier, produced less nodes, less branches, less inflorescences, but more flowers per inflorescence than F. tataricum. The yield was higher in F. tataricum, while the thousand-grain weight was higher in F. esculentum. Yield ranged between 2037 kg/ha and 3667 kg/ha depending on the species and year. Regarding nutritional qualities, seeds of F. esculentum contained more proteins (15.4% vs. 12.8%) than seeds of F. tataricum although their amino acid profile was similar. Seeds of F. esculentum contained also more Mg (1.36 vs. 1.15 mg/g dry weight (DW)) and less Fe (22.9 vs. 32.6 µg/g DW) and Zn (19.6 vs. 24.5 µg/g DW) than F. tataricum. The main difference between seed nutritional quality was the concentration of flavonoids that was 60 times higher in F. tataricum than in F. esculentum. Both species grow well under Belgian conditions and showed good seed quality.
Collapse
Affiliation(s)
- Lauranne Aubert
- Earth and Life Institute-Agronomy, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; (L.A.); (C.D.)
| | - Christian Decamps
- Earth and Life Institute-Agronomy, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; (L.A.); (C.D.)
| | - Guillaume Jacquemin
- Unité Productions Végétales, Département Productions Agricoles, Centre Wallon de Recherches Agronomiques, B-5030 Gembloux, Belgium;
| | - Muriel Quinet
- Earth and Life Institute-Agronomy, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; (L.A.); (C.D.)
| |
Collapse
|