1
|
Song H, Ren S, Wang X, Hu Y, Xu M, Zhang H, Cao H, Huang K, Wang C, Guan X. Encapsulation of caffeic acid phenethyl ester by self-assembled sorghum peptide nanoparticles: Fabrication, storage stability and interaction mechanisms. Food Chem 2024; 453:139642. [PMID: 38788643 DOI: 10.1016/j.foodchem.2024.139642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Caffeic acid phenethyl ester (CAPE) is a naturally occurring phenolic compound with various biological activities. However, poor water solubility and storage stability limit its application. In this context, sorghum peptides were used to encapsulate CAPE. Sorghum peptides could self-assemble into regularly spherical nanoparticles (SPNs) by hydrophobic interaction and hydrogen bonds. Solubility of encapsulated CAPE was greatly increased, with 9.44 times higher than unencapsulated CAPE in water. Moreover, the storage stability of CAPE in aqueous solution was significantly improved by SPNs encapsulation. In vitro release study indicated that SPNs were able to delay CAPE release during the process of gastrointestinal digestion. Besides, fluorescence quenching analysis showed that a static quenching existed between SPNs and CAPE. The interaction between CAPE and SPNs occurred spontaneously, mainly driven by hydrophobic interactions. The above results suggested that SPNs encapsulation was an effective approach to improve the water solubility and storage stability of CAPE.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Shaoxia Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yawen Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingda Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
2
|
Ceylan FD, Günal-Köroğlu D, Saricaoglu B, Ozkan G, Capanoglu E, Calina D, Sharifi-Rad J. Anticancer potential of hydroxycinnamic acids: mechanisms, bioavailability, and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03396-x. [PMID: 39212736 DOI: 10.1007/s00210-024-03396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hydroxycinnamic acids (HCAs) are plant compounds with anticancer potential due to their antioxidant, anti-inflammatory, apoptosis-inducing, and proliferation-inhibiting effects. This review aims to consolidate and analyze current knowledge on the anticancer effects of HCAs, exploring their mechanisms of action, bioavailability challenges, and potential therapeutic applications. A comprehensive literature search on PubMed/MedLine, Scopus, Web of Science, and Google Scholar focused on the anticancer properties, mechanisms, bioavailability, and safety profiles of HCAs. Studies have shown that HCAs, such as caffeic acid, ferulic acid, and sinapic acid, inhibit the growth of cancer cells in vitro and in vivo and sensitize cancer cells to chemotherapy and radiation therapy. These effects are mediated by mechanisms including the inhibition of cell survival pathways, modulation of gene expression, and induction of oxidative stress and DNA damage. Additionally, several studies have demonstrated that HCAs exhibit selective toxicity, with a higher propensity to induce cell death in cancerous cells compared to normal cells. However, the toxicity profile of HCAs can vary depending on the specific compound, dosage, and experimental conditions. The anticancer properties of HCAs suggest potential applications in cancer prevention and treatment. However, it is essential to distinguish between their use as dietary supplements and therapeutic agents, as the dosage and formulation suitable for dietary supplements may be insufficient for therapeutic purposes. The regulatory and practical implications of using HCAs in these different contexts require careful consideration. Further research is needed to determine appropriate dosages, formulations, long-term effects, and regulatory frameworks for HCAs as both dietary supplements and therapeutic agents.
Collapse
Affiliation(s)
- Fatma Duygu Ceylan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| |
Collapse
|
3
|
Wang A, Lenaghan SC, Zhong Q. Structures and interactions forming stable shellac-casein nanocomplexes with a pH-cycle. Int J Biol Macromol 2024; 267:131585. [PMID: 38621557 DOI: 10.1016/j.ijbiomac.2024.131585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Casein forms diverse structures with functionalities tunable by complexation with surfactants, and shellac is an emerging surfactant. In the present work, molecular and mesoscopic structures of shellac and micellar casein and the underlying interactions after treatment with a pH-cycle were investigated. Dispersions with 0.5 % w/v shellac and various shellac:casein mass ratios were prepared at pH 12.0 to dissolve shellac and dissociate casein micelles, followed by neutralization to pH 7.0 to form complexes. Both covalent and non-covalent (hydrogen bonding, electrostatic, and hydrophobic) interactions contributed to the complex formation. The formed complexes had an average diameter of ~80 nm. The complexation of shellac and casein prevented the precipitation of protonated shellac during neutralization, and dispersions with casein:shellac mass ratios of 2:1 and above were absent of precipitates at pH 7.0. The formed nanocomplexes may have applications for preparing novel colloidal systems and loading lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN, USA; Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Wang X, Feng S, Song H. Caffeic Acid Phenethyl Ester Encapsulated in Self-Assemble Rice Peptides Nanoparticles: Storage Stability, In Vitro Release, and Their Interaction Mechanisms. Foods 2024; 13:755. [PMID: 38472867 DOI: 10.3390/foods13050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is an important active component of propolis with many bioactivities. However, its efficiency and practical application are restricted due to its poor aqueous solubility and storage stability. In this study, a nanocarrier was fabricated to encapsulate CAPE using self-assembled rice peptides obtained by controllable enzymolysis. The physicochemical properties, encapsulation efficiency, and loading capacity of rice peptides nanoparticles (RPNs) were characterized. The storage stability, in vitro release, and interaction mechanisms between CAPE and RPNs were investigated. The results showed that RPNs, mainly assembled by disulfide bonds and hydrogen bonds, possessed an effective diameter of around 210 nm and a high encapsulation efficiency (77.77%) and loading capacity (3.89%). Importantly, the water solubility of CAPE was increased by 45 times after RPNs encapsulation. Moreover, RPNs encapsulation also significantly increased CAPE stability, about 1.4-fold higher than that of unencapsulated CAPE after 18-day storage. An in vitro release study demonstrated that RPNs could delay the release of CAPE, implying a better CAPE protection against extreme environments during digestion. Hydrogen bond and van der Waals force are the predominant interaction forces between RPNs and CAPE. Therefore, the newly developed nanoparticle is a potential delivery system that could effectively improve the aqueous solubility and stability of CAPE.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Siyi Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
5
|
Wang A, Jain S, Dia V, Lenaghan SC, Zhong Q. Shellac Micelles Loaded with Curcumin Using a pH Cycle to Improve Dispersibility, Bioaccessibility, and Potential for Colon Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15166-15177. [PMID: 36398904 DOI: 10.1021/acs.jafc.2c04428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Delivery systems smaller than 50 nm are advantageous for cancer prevention. In this study, curcumin was dissolved in shellac micelles following co-dissolving at pH 13.0 and neutralization using glucono-delta-lactone. With 5% w/v shellac and 0.5-5 mg/mL curcumin, the loading capacity and encapsulation efficiency were up to 8.0 and 92.6%, respectively, and the nanocapsules had an average diameter of 20 nm. Differential scanning calorimetry, FTIR spectroscopy, and fluorescence spectroscopy results confirmed the encapsulation of curcumin in an amorphous state in shellac micelles. The neutral nanocapsule dispersions maintained the particle dimension and had less than 10% curcumin degradation during 4 week storage at 4 °C. Nanoencapsulating curcumin enhanced in vitro bioavailability and antiproliferation activity against colon cancer cells. After simulated digestions, ∼60% of the nanoencapsulated curcumin was not available for intestinal absorption, nanocapsules retained their structure, and nanoencapsulated curcumin remained active against colon cancer cells, indicating the potential delivery for colorectal cancer prevention.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee37996-4539, United States
| | - Surangna Jain
- Department of Food Science, University of Tennessee, Knoxville, Tennessee37996-4539, United States
| | - Vermont Dia
- Department of Food Science, University of Tennessee, Knoxville, Tennessee37996-4539, United States
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee37996-4539, United States
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee37996-4539, United States
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, Tennessee37996-4539, United States
| |
Collapse
|
6
|
Optimization of Wall Material Composition for Production of Spray-dried Sacha Inchi Oil Microcapsules with Desirable Physicochemical Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Encapsulation of Caffeic Acid in Carob Bean Flour and Whey Protein-Based Nanofibers via Electrospinning. Foods 2022; 11:foods11131860. [PMID: 35804674 PMCID: PMC9265943 DOI: 10.3390/foods11131860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to introduce caffeic acid (CA) into electrospun nanofibers made of carob flour, whey protein concentrate (WPC), and polyethylene oxide (PEO). The effects of WPC concentration (1% and 3%) and CA additions (1% and 10%) on the characteristics of solutions and nanofibers were investigated. The viscosity and electrical conductivity of the solutions were examined to determine characteristics of solutions. Scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), water vapor permeability (WVP), and Fourier transform infrared (FTIR) analysis were used to characterize the nanofibers. According to the SEM results, the inclusion of CA into nanofibers resulted in thinner nanofibers. All nanofibers exhibited uniform morphology. CA was efficiently loaded into nanofibers. When CA concentrations were 1% and 10%, loading efficiencies were 76.4% and 94%, respectively. Nanofibers containing 10% CA demonstrated 92.95% antioxidant activity. The results indicate that encapsulating CA into carob flour–WPC-based nanofibers via electrospinning is a suitable method for active packaging applications.
Collapse
|
8
|
Suwannasang S, Zhong Q, Thumthanaruk B, Vatanyoopaisarn S, Uttapap D, Puttanlek C, Rungsardthong V. Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hong S, Dia VP, Baek SJ, Zhong Q. Nanoencapsulation of apigenin with whey protein isolate: physicochemical properties, in vitro activity against colorectal cancer cells, and bioavailability. Lebensm Wiss Technol 2022; 154:112751. [PMID: 34840350 PMCID: PMC8612601 DOI: 10.1016/j.lwt.2021.112751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Incorporating lipophilic phytochemicals with anti-cancer activities in functional beverages requires an appropriate nanoencapsulation technology. The present objective was to encapsulate apigenin with whey protein isolate (WPI) utilizing a pH-cycle method and subsequently characterize physicochemical properties, the in vitro anticancer activities against human colorectal HCT-116 and HT-29 cancer cells, and the in vivo bioavailability. Up to 2.0 mg/mL of apigenin was nanoencapsulated with 1.0 mg/mL WPI, with an encapsulation efficiency of up to 98.15% and loading capacity of up to 196.21 mg/g-WPI. Nanodispersions were stable during storage, and apigenin became amorphous after encapsulation. Nanoencapsulation and in vitro digestion did not reduce the anti-proliferative activity of apigenin. Nanoencapsulation of apigenin enhanced the cellular uptake, the pro-apoptotic effects, and the bioavailability in the mice's blood and colon mucosa when comparing to the unencapsulated apigenin. Therefore, the present work may be significant to incorporate lipophilic phytochemicals in functional beverages for disease prevention.
Collapse
Affiliation(s)
- Shan Hong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - Seung Joon Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA,Corresponding Author: Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN 37996, United States,
| |
Collapse
|
10
|
Wei X, Dai J, Zhong Y, Zhang D, Liu L, Wang L, Huang Y, Chen P, Zhou Z, Chen X, Yang X, Wang Q. Caffeic acid phenethyl ester loaded in nano-targeted delivery system with casein: Physicochemical characterization, in vitro release, and binding mechanisms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Huang CW, Lee SY, Wei TT, Kuo YH, Wu ST, Ku HC. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomed Pharmacother 2021; 142:112028. [PMID: 34399201 DOI: 10.1016/j.biopha.2021.112028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Acute kidney disease due to renal ischemia/reperfusion (I/R) is a major clinical problem without effective therapies. The injured tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT). It will loss epithelial phenotypes and express the mesenchymal characteristics. The formation of scar tissue in the interstitial space during renal remodeling is caused by the excessive accumulation of extracellular matrix components and induced fibrosis. This study investigated the effect of caffeic acid ethanolamide (CAEA), a novel caffeic acid derivative, on renal remodeling after injury. The inhibitory role of CAEA on EMT was determined by western blotting, real-time PCR, and immunohistochemistry staining. Treating renal epithelial cells with CAEA in TGF-β exposed cell culture successfully maintained the content of E-cadherin and inhibited the expression of mesenchymal marker, indicating that CAEA prevented renal epithelial cells undergo EMT after TGF-β exposure. Unilateral renal I/R were performed in mice to induce renal remodeling models. CAEA can protect against I/R-induced renal remodeling by inhibiting inflammatory reactions and consecutively inhibiting TGF-β-induced EMT, characterized by the preserved E-cadherin expression and alleviated α-SMA and collagen expression, as well as the alleviated of renal fibrosis. We also revealed that CAEA may exhibits biological activity by targeting TGFBRI. CAEA may antagonize TGF-β signaling by interacting with TGFBR1, thereby blocking binding between TGF-β and TGFBR1 and reducing downstream signaling, such as Smad3 phosphorylation. Our data support the administration of CAEA after I/R as a viable method for preventing the progression of acute renal injury to renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taiwan
| | - Tzu-Tang Wei
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|