1
|
Zuo L, Huang S, He Y, Zhang L, Cheng G, Feng Y, Han Q, Ge L, Feng L. Design, Synthesis, and Bioassay for the Thiadiazole-Bridged Thioacetamide Compound as Cy-FBP/SBPase Inhibitors Based on Catalytic Mechanism Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11834-11846. [PMID: 37498729 DOI: 10.1021/acs.jafc.3c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (Cy-FBP/SBPase) was an important regulatory enzyme in cyanobacterial photosynthesis and was a potential target enzyme for screening to obtain novel inhibitors against cyanobacterial blooms. In this study, we developed a novel pharmacophore screening model based on the catalytic mechanism and substrate structure of Cy-FBP/SBPase and screened 26 S series compounds with different structures and pharmacophore characteristics from the Specs database by computer-assisted drug screening. These compounds exhibited moderate inhibitory activity against Cy-FBP/SBPase, with 9 compounds inhibiting >50% at 100 μM. Among them, compound S5 showed excellent inhibitory activity against both Cy-FBP/SBPase and Synechocystis sp. PCC6803 (IC50 = 6.7 ± 0.7 μM and EC50 = 7.7 ± 1.4 μM). The binding mode of compound S5 to Cy-FBP/SBPase was predicted using the molecular docking theory and validated by sentinel mutation and enzyme activity analysis. Physiochemical, gene transcription level, and metabolomic analyses showed that compound S5 significantly reduced the quantum yield of photosystem II and the maximum electron transfer rate, downregulated transcript levels of related genes encoding the Calvin cycle and photosystem, reduced the photosynthetic efficiency of cyanobacteria, thus inhibited metabolic pathways, such as the Calvin cycle and tricarboxylic acid cycle, and eventually achieved an efficient algicide. In addition, compound S5 had a high safety profile for human-derived cells and zebrafish. In summary, the novel pharmacophore screening model obtained from the current work provides an effective solution to the cyanobacterial bloom problem.
Collapse
Affiliation(s)
- Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Shi Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Liexiong Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Guonian Cheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Yu Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Qiang Han
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Li Ge
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, People's Republic of China
- National Key Laboratory of Green Pesticide, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
2
|
Li ZC, Li W, Wang R, Wang DX, Tang AN, Wang XP, Gao XP, Zhao GM, Kong DM. Lignin-based covalent organic polymers with improved crystallinity for non-targeted analysis of chemical hazards in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130821. [PMID: 36709736 DOI: 10.1016/j.jhazmat.2023.130821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lignin, the most abundant source of renewable aromatic compounds derived from natural lignocellulosic biomass, has great potential for various applications as green materials due to its abundant active groups. However, it is still challenging to quickly construct green polymers with a certain crystallinity by utilizing lignin as a building block. Herein, new green lignin-based covalent organic polymers (LIGOPD-COPs) were one-pot fabricated with water as the reaction solvent and natural lignin as the raw material. Furthermore, by using paraformaldehyde as a protector and modulator, the LIGOPD-COPs prepared under optimized conditions displayed better crystallinity than reported lignin-based polymers, demonstrating the feasibility of preparing lignin-based polymers with improved crystallinity. The improved crystallinity confers LIGOPD-COPs with enhanced application performance, which was demonstrated by their excellent performances in sample treatment of non-targeted food safety analysis. Under optimized conditions, phytochromes, the main interfering matrices, were almost completely removed from different phytochromes-rich vegetables by LIGOPD-COPs, accompanied by "full recovery" of 90 chemical hazards. Green, low-cost, and reusable properties, together with improved crystallinity, will accelerate the industrialization and marketization of lignin-based COPs, and promote their applications in many fields.
Collapse
Affiliation(s)
- Zhan-Chao Li
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiao-Peng Wang
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiao-Ping Gao
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Gai-Ming Zhao
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
3
|
Jongedijk E, Fifeik M, Arrizabalaga-Larrañaga A, Polzer J, Blokland M, Sterk S. Use of high-resolution mass spectrometry for veterinary drug multi-residue analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Liesenfeld S, Steliopoulos P, Wenig S, Gottstein V, Hamscher G. Comprehensive LC-HRMS metabolomics analyses for the estimation of environmental inputs of altrenogest in pig breeding. CHEMOSPHERE 2022; 287:132353. [PMID: 34826959 DOI: 10.1016/j.chemosphere.2021.132353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Altrenogest (ALT), a synthetic progestogen, is used in pig farming for estrus synchronization in gilts. Residues of ALT and its metabolites may reach the aquatic environment via the spread of liquid manure and may present a risk for fish and other higher aquatic organisms due to its endocrine disrupting potential. A pilot study was conducted in which spot urine samples from ALT-treated and non-medicated gilts were collected. We applied LC-HRMS analysis to perform targeted analysis of ALT and known metabolites as well as non-targeted metabolomics analyses to find previously unknown metabolites. The targeted investigation showed that glucuronide conjugates of ALT and its photo-isomerization product are main urinary metabolites of ALT in gilts. Furthermore, an unknown isomerization product of ALT was observed at trace level, whereas ALT and ALT sulfate were not found. The chemometric analysis of non-targeted data revealed a clear difference between ALT-treated gilts and control animals. Furthermore, a hydroxylated ALT glucuronide was identified as highly significant in the ALT-treated group. Additional biomarker annotation and pathway mapping revealed changes in the metabolism of ALT-treated animals which can be explained by ALT's hormonal action. This study illustrates the exceptional potential of LC-HRMS and metabolomics for the detection of potentially new environmental contaminants with high biological activity. Further advantages of the method described are the sampling during routine breeding conditions, a relatively small number of animals required and no particular stress for the animals.
Collapse
Affiliation(s)
- Sabrina Liesenfeld
- CVUA Karlsruhe, Department of Veterinary Drug Residue Analysis, Weissenburger Straße 3, 76187, Karlsruhe, Germany; Justus Liebig University, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Panagiotis Steliopoulos
- CVUA Karlsruhe, Department of Veterinary Drug Residue Analysis, Weissenburger Straße 3, 76187, Karlsruhe, Germany
| | - Svenja Wenig
- CVUA Karlsruhe, Department of Veterinary Drug Residue Analysis, Weissenburger Straße 3, 76187, Karlsruhe, Germany
| | - Vera Gottstein
- CVUA Karlsruhe, Department of Veterinary Drug Residue Analysis, Weissenburger Straße 3, 76187, Karlsruhe, Germany
| | - Gerd Hamscher
- Justus Liebig University, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.
| |
Collapse
|