1
|
Zhang C, Wang X, Liu Y, Wang J, Xie J. Characteristics of meat flavoring prepared using hydrolyzed plant protein mix by three different heating processes. Food Chem 2024; 446:138853. [PMID: 38422645 DOI: 10.1016/j.foodchem.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.
Collapse
Affiliation(s)
- Chenping Zhang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yang Liu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Yang J, Guo S, Zeng X, Bai W, Sun B, Zhang Y. Synthesis of taste active γ-glutamyl peptides with pea protein hydrolysate and their taste mechanism via in silico study. Food Chem 2024; 430:136988. [PMID: 37544154 DOI: 10.1016/j.foodchem.2023.136988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Pea (Pisum sativum L.) protein hydrolysate (PPH) has a bitter taste, which has limited its use in food industry. γ-Glutamylation is used to debitter PPH. Results showed that the bitterness of PPH was decreased significantly due to the formation of γ-glutamyl peptides, including 16 γ-[Glu](n=1/2)-amino acids (AAs) and 8 newly discovered γ-glutamyl tripeptides (γ-Glu-Asn-Phe, γ-Glu-Leu-Val, γ-Glu-Leu-Tyr, γ-Glu-Gly-Leu, γ-Glu-Gly-Phe, γ-Glu-Gly-Tyr, γ-Glu-Val-Val, and γ-Glu-Gln-Tyr). Their total production concentrations were 27.25 μmol/L and 77.76 μmol/L, respectively. The γ-Glu-AA-AAs presented an umami-enhancing, salty-enhancing, and kokumi taste when their concentration reached 1.67 ± 0.20 ∼ 2.07 ± 0.20, 1.65 ± 0.25 ∼ 2.29 ± 0.45 and 0.68 ± 0.19 ∼ 1.03 ± 0.22 mmol/L, respectively. The γ-Glu-AA-AAs exhibited a kokumi taste by entering the Venus flytrap (VFT) of the calcium-sensing receptor and interacting with Ser147, Ala168, and Ser170. γ-Glu-AA-AAs can enhance the umaminess of Monosodium Glutamate (MSG) as they can enter the binding pocket of the taste receptor type 1 subunit 3 (T1R3)-MSG complex.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Siqi Guo
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
3
|
Ongkowijoyo P, Peterson DG. Identification of compounds contributing to umami taste of pea protein isolate. Food Chem 2023; 429:136863. [PMID: 37490820 DOI: 10.1016/j.foodchem.2023.136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
The umami taste of pea protein ingredients can be desirable or undesirable based on the food application. The compounds contributing to the umami perception of pea protein isolate (PPI) were investigated. Sensory-guided prep-liquid chromatography fractionation of a 10% aqueous PPI solution revealed one well-known compound, monosodium glutamate (MSG), however, it was reported at a subthreshold concentration. Two umami enhancing compounds 5'-adenosine monophosphate (AMP) and 5'-uridine monophosphate (UMP) were subsequently identified after the LC fractions were re-evaluated with MSG. Sensory recombination studies, utilizing the aqueous PPI solution as the base, confirmed AMP and UMP were umami enhancers of MSG and contributed approximately 81% of the perceived umami intensity. However UMP was only reported to enhance umami perception in combination with AMP (not individually) indicating synergistic interactions were observed between the two enhancer compounds. Therefore the presence of all three compounds are important for umami perception and provide an improved basis to tailor the flavor profile in PPI products.
Collapse
Affiliation(s)
- Paulina Ongkowijoyo
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Devin G Peterson
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Fu Q, Zhao J, Rong S, Han Y, Liu F, Chu Q, Wang S, Chen S. Research Advances in Plant Protein-Based Products: Protein Sources, Processing Technology, and Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15429-15444. [PMID: 37824166 DOI: 10.1021/acs.jafc.3c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plant proteins are high-quality dietary components of food products. With the growing interest in sustainable and healthy food alternatives, plant proteins have gained significant attention as viable substitutes for animal-based proteins. Understanding the diversity of protein sources derived from plants, novel processing technology, and multiple applications is crucial for developing nutritious and sustainable plant protein-based products. This Review summarizes the natural sources of traditional and emerging plant proteins. The classifications, processing technologies, and applications of plant protein-based products in the food industry are explicitly elucidated. Moreover, the advantages and disadvantages of plant protein-based food products are revealed. Strategies such as protein fortification and complementation to overcome these shortcomings are critically discussed. We also demonstrate several issues that need to be addressed in future development.
Collapse
Affiliation(s)
- Qi Fu
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling 712199, China
| | - Qianmei Chu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Suqing Wang
- School of Nursing, Wuhan University, Wuhan 430071, China
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, Wuhan, China
| |
Collapse
|
5
|
Enzymatic Modification of Plant Proteins for Improved Functional and Bioactive Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Enzymatic hydrolysis of lentil protein concentrate for modification of physicochemical and techno-functional properties. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractThe effects of hydrolysis by commercial food-grade proteases on the physicochemical and techno-functional properties of lentil protein concentrate were investigated. Lentil protein concentrate was hydrolysed with Alcalase, Novozym 11028 or Flavourzyme, and a control was prepared without enzyme addition under the same conditions. Differences in specificity between the three proteases were evident in the electrophoretic protein profile, reversed-phase HPLC peptide profile, and free amino acid composition. Alcalase and Novozym were capable of extensively degrading all the major protein fractions. Alcalase or Novozym treatment resulted in considerably higher solubility under acidic conditions compared to the control. Flavourzyme treatment resulted in moderately improved solubility in the acidic range, but slightly lower solubility at pH 7. Alcalase treatment resulted in slightly larger particle size and slightly higher viscosity. The foaming properties of the protein concentrate were not significantly affected by hydrolysis. Increased solubility in acidic conditions with hydrolysis could broaden the range of food and beverage applications for lentil protein concentrate.
Collapse
|
7
|
Vogelsang-O’Dwyer M, Sahin AW, Arendt EK, Zannini E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022; 11:1307. [PMID: 35564030 PMCID: PMC9104109 DOI: 10.3390/foods11091307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Pulse proteins are being increasingly investigated as nutritious and functional ingredients which could provide alternatives to animal proteins; however, pulse protein ingredients do not always meet the functionality requirements necessary for various applications. Consequently, enzymatic hydrolysis can be employed as a means of improving functional properties such as solubility, emulsifying, foaming, and gelling properties. This review aims to examine the current literature regarding modification of these properties with enzymatic hydrolysis. The effects of enzymatic hydrolysis on the functionality of pulse proteins generally varies considerably based on the enzyme, substrate, processing steps such as heat treatment, degree of hydrolysis, and pH. Differences in protease specificity as well as protein structure allow for a wide variety of peptide mixtures to be generated, with varying hydrophobic and electrostatic properties. Typically, the most significant improvements are seen when the original protein ingredient has poor initial functionality. Solubility is usually improved in the mildly acidic range, which may also correspond with improved foaming and emulsifying properties. More work should be carried out on the potential of enzymatic hydrolysis to modify gelation properties of pulse proteins, as the literature is currently lacking. Overall, careful selection of proteases and control of hydrolysis will be necessary to maximize the potential of enzymatic hydrolysis as a tool to improve pulse protein functionality and broaden the range of potential applications.
Collapse
Affiliation(s)
- Martin Vogelsang-O’Dwyer
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (M.V.-O.); (A.W.S.); (E.Z.)
| |
Collapse
|
8
|
Xia Y, Zhu L, Wu G, Liu T, Li X, Wang X, Zhang H. Comparative study of various methods used for bitterness reduction from pea (Pisum sativum L.) protein hydrolysates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Xie D, Gao Y, Du L, Shen Y, Xie J, Wei D. Effect of flavorzyme‐modified soy protein on the functional properties, texture and microstructure of Mozzarella cheese analogue. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Dewei Xie
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Engineering East China University of Science and Technology Shanghai P. R. China
| | - Yunsheng Gao
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Engineering East China University of Science and Technology Shanghai P. R. China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Engineering East China University of Science and Technology Shanghai P. R. China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Engineering East China University of Science and Technology Shanghai P. R. China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Engineering East China University of Science and Technology Shanghai P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) Shanghai P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Engineering East China University of Science and Technology Shanghai P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) Shanghai P. R. China
| |
Collapse
|