1
|
Zhou ZW, Ji K, Zhu XY, Wu XY, Lin RT, Xie CC, Cai ZL, Chen JJ. Natural isoflavone formononetin inhibits IgE-mediated mast cell activation and allergic inflammation by increasing IgE receptor degradation. Food Funct 2023; 14:2857-2869. [PMID: 36880662 DOI: 10.1039/d2fo03997d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Immunoglobulin (Ig)E-associated mast cell (MC) activation triggers pro-inflammatory signals that underlie type I allergic diseases. Here, we examined the effects of the natural isoflavone formononetin (FNT) on IgE-mediated MC activation and associated mechanisms of high-affinity IgE receptor (FcεRI) signal inhibition. The effects of FNT on the mRNA expression of inflammatory factors, release of histamine and β-hexosaminidase (β-hex), and expression of signaling proteins and ubiquitin (Ub)-specific proteases (USPs) were analyzed in two sensitized/stimulated MC lines. FcεRIγ-USP interactions were detected by co-immunoprecipitation (IP). FNT dose-dependently inhibited β-hex activity, histamine release, and inflammatory cytokine expression in FcεRI-activated MCs. FNT suppressed IgE-induced NF-κB and MAPK activity in MCs. The oral administration of FNT attenuated passive cutaneous anaphylaxis (PCA) reactions and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) reactions in mice. FNT reduced the FcεRIγ chain expression, via increased proteasome-mediated degradation, and induced FcεRIγ ubiquitination by inhibiting USP5 and/or USP13. FNT and USP inhibition may be useful for suppressing IgE-mediated allergic diseases.
Collapse
Affiliation(s)
- Zi-Wen Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Xue-Yan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Xin-Ying Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Ruo-Tong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
2
|
Liu J, Banuvar S, Viana M, Barengolts E, Chen SN, Pauli GF, van Breemen RB. Pharmacokinetic Interactions of a Licorice Dietary Supplement with Cytochrome P450 Enzymes in Female Participants. Drug Metab Dispos 2023; 51:199-204. [PMID: 36328482 PMCID: PMC9900865 DOI: 10.1124/dmd.122.001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Licorice, the roots and rhizomes of Glycyrrhiza glabra L., has been used as a medicinal herb, herbal adjuvant, and flavoring agent since ancient times. Recently, licorice extracts have become popular as dietary supplements used by females to alleviate menopausal symptoms. Exposure to licorice products containing high levels of glycyrrhizic acid can cause hypokalemia, but independent from this effect, preclinical data indicate that licorice can inhibit certain cytochrome P450 (P450) enzymes. To evaluate whether clinically relevant pharmacokinetic interactions of licorice with P450 enzymes exist, a phase 1 clinical investigation was carried out using a licorice extract depleted in glycyrrhizic acid (content <1%) and a cocktail containing caffeine, tolbutamide, alprazolam, and dextromethorphan, which are probe substrates for the enzymes CYP1A2, CYP2C9, CYP3A4/5, and CYP2D6, respectively. The botanically authenticated and chemically standardized extract of roots from G. glabra was consumed by 14 healthy menopausal and postmenopausal female participants twice daily for 2 weeks. The pharmacokinetics of each probe drug were evaluated immediately before and after supplementation with the licorice extract. Comparison of the average areas under the time-concentration curves (AUCs) for each probe substrate in serum showed no significant changes from licorice consumption, whereas time to reach peak concentration for caffeine and elimination half-life for tolbutamide showed small changes. According to the US Food and Drug Administration guidance, which is based on changes in the AUC of each probe substrate drug, the investigated licorice extract should not cause any clinically relevant pharmacokinetic interactions with respect to CYP3A4/5, CYP2C9, CYP2D6, or CYP1A2. SIGNIFICANCE STATEMENT: Despite generally-recognized-as-safe status, the licorice species Glycyrrhiza glabra has been associated with some toxicity. Preclinical studies suggest that G. glabra might cause pharmacokinetic drug interactions by inhibiting several cytochrome P450 enzymes. This phase 1 clinical study addressed these concerns by evaluating clinically relevant effects with respect to CYP3A4/5, CYP2C9, CYP2D6, and CYP1A2. These results showed that a standardized G. glabra extract did not cause any clinically relevant pharmacokinetic drug interactions with four major cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Jialin Liu
- Linus Pauling Institute, College of Pharmacy, Oregon State University, Corvallis, Oregon (J.L., R.B.v.B.) and UIC Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois (S.B., M.V., E.B., S.-N.C., G.F.P., R.B.v.B.)
| | - Suzanne Banuvar
- Linus Pauling Institute, College of Pharmacy, Oregon State University, Corvallis, Oregon (J.L., R.B.v.B.) and UIC Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois (S.B., M.V., E.B., S.-N.C., G.F.P., R.B.v.B.)
| | - Marlos Viana
- Linus Pauling Institute, College of Pharmacy, Oregon State University, Corvallis, Oregon (J.L., R.B.v.B.) and UIC Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois (S.B., M.V., E.B., S.-N.C., G.F.P., R.B.v.B.)
| | - Elena Barengolts
- Linus Pauling Institute, College of Pharmacy, Oregon State University, Corvallis, Oregon (J.L., R.B.v.B.) and UIC Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois (S.B., M.V., E.B., S.-N.C., G.F.P., R.B.v.B.)
| | - Shao-Nong Chen
- Linus Pauling Institute, College of Pharmacy, Oregon State University, Corvallis, Oregon (J.L., R.B.v.B.) and UIC Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois (S.B., M.V., E.B., S.-N.C., G.F.P., R.B.v.B.)
| | - Guido F Pauli
- Linus Pauling Institute, College of Pharmacy, Oregon State University, Corvallis, Oregon (J.L., R.B.v.B.) and UIC Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois (S.B., M.V., E.B., S.-N.C., G.F.P., R.B.v.B.)
| | - Richard B van Breemen
- Linus Pauling Institute, College of Pharmacy, Oregon State University, Corvallis, Oregon (J.L., R.B.v.B.) and UIC Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois (S.B., M.V., E.B., S.-N.C., G.F.P., R.B.v.B.)
| |
Collapse
|
3
|
Zuo HL, Huang HY, Lin YCD, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD. Enzyme Activity of Natural Products on Cytochrome P450. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020515. [PMID: 35056827 PMCID: PMC8779343 DOI: 10.3390/molecules27020515] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases, play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug interactions, usually involving competition with another drug for the same enzyme binding site. Compounds from herbal or natural products are involved in many scenarios in the context of such interactions. These interactions are decisive both in drug discovery regarding the synergistic effects, and drug application regarding unwanted side effects. Herein, this review was conducted as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly 500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal formulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional medicines causing serious adverse events. Conducting this review may help in metabolism-based drug combination discovery, and in the evaluation of the safety profile of natural products used therapeutically.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Xiang-Jun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Dai-Lin Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Yu-Heng Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Correspondence: ; Tel.: +86-0755-2351-9601
| |
Collapse
|