1
|
Li X, Liu L, Song S, Sun M, Kuang H, Xu C, Guo L. Colloidal gold immunochromatographic assay for the detection of total aflatoxins in cereals. Food Chem 2025; 472:142877. [PMID: 39827566 DOI: 10.1016/j.foodchem.2025.142877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Aflatoxins (AFTs) are highly carcinogenic and mainly contaminate cereals. In this study, we designed and screened a hapten by analyzing the same characteristic groups of AFTs (AFB1, AFB2, AFG1 and AFG2), prepared a monoclonal antibody (mAb) 4C11 with a high sensitivity and specificity that can simultaneously detect all the main AFTs, and established a colloidal gold immunochromatographic assay (CG-ICA) for the detection of AFTs in cereals. The limits of detection (LODs) were 0.77 μg/kg, 1.40 μg/kg and 0.71 μg/kg for wheat, rice and maize, respectively, with linear ranges of 1.17-5.52 μg/kg, 1.84-5.20 μg/kg and 1.26-8.95 μg/kg, respectively. The spiked recoveries of AFTs samples ranged from 95.6 % to 104.2 %, and the positive samples further validated the reliability of the method. The results demonstrated that the method can be used for rapid, sensitive and efficient on-site detection of AFTs in cereals.
Collapse
Affiliation(s)
- Xiaofang Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Qiu Z, Guo W, Yu Q, Li D, Zhao M, Lv H, Hua X, Wang Y, Ma Q, Ding Z. Gibberellin 2-oxidase 1(CsGA2ox1) involved gibberellin biosynthesis regulates sprouting time in camellia sinensis. BMC PLANT BIOLOGY 2024; 24:869. [PMID: 39289599 PMCID: PMC11406726 DOI: 10.1186/s12870-024-05589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Tea is an important cash crop and buds are its main product. To elucidate the molecular mechanism of the sprouting time of tea plants, 'Yuchunzao', which was an early sprouting tea cultivar, was studied. 'Echa 1', sprout one week later than 'Yuchunzao' in spring, was used as the control. RESULTS A total of 26 hormonal compounds and its derivatives in tea plants were qualified by using Ultra Performance Liquid Chromatography-Tandem mass spectrometry (UPLC-MS/MS). The result showed that GA20, GA3 and ICA were significantly different in 'Yuchunzao' than in 'Echa 1', with GA20 and GA3 up-regulated and ICA down-regulated. Based on the Illumina platform, transcriptome analysis revealed a total of 5,395 differentially expressed genes (DEGs). A diterpenoid biosynthesis related gene, gibberellin 2-oxidase 1 (CsGA2ox1), was downregulated in 'Yuchunzao' compared to 'Echa 1'. CsGA2ox1 regulate the transformation of GA different forms in plants. The relative expression of CsGA2ox1 showed an adverse trend with the content of GA20 and GA3. Our results suggest that down regulation of CsGA2ox1 resulted in the accumulation of GA3 and GA20, and then promoted sprout of 'Yuchunzao'. CONCLUSION This study provides theoretical basis of tea plants sprout and guides the tea breeding in practice.
Collapse
Affiliation(s)
- Ziyuan Qiu
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Wenhui Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Qian Yu
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Dongxue Li
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Mengjie Zhao
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Han Lv
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Xuewen Hua
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingping Ma
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China.
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
3
|
Yang Q, Yu H, Yang C, Zhao Z, Ju Z, Wang J, Bai Z. Enhanced phytoremediation of cadmium-contaminated soil using chelating agents and plant growth regulators: effect and mechanism. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240672. [PMID: 39323552 PMCID: PMC11421895 DOI: 10.1098/rsos.240672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The heavy metal cadmium (Cd) is a major threat to food safety and human health. Phytoremediation is the most widely used remediation technology, and how to improve the remediation efficiency of phytoremediation has become a key issue. In this study, we constructed an intensive phytoremediation technology for remediation of Cd-contaminated soil with biodegradable chelating agent and plant growth regulator combined with maize and investigated the mechanism of this technology. The results showed that the best remediation effect was achieved in the treatment with 10-6 mol l-1 gibberellic acid (GA3) and 6 mmol kg-1 aspartate diethoxysuccinic acid (AES) combined with maize. In this treatment, the total biomass and extraction efficiency of maize were 3.6 and 8.67 times higher than those of the control, respectively, and the antioxidant enzyme activities of maize were also increased. The soil was enriched with dominant bacterial genera that promote plant growth and metabolism and tolerance to heavy metal stress, which in turn promoted maize growth and Cd accumulation. Structural equation modelling results indicated a large effect of plant Cd concentration and plant antioxidant enzyme activity on plant Cd extraction. The enhanced phytoremediation technology showed good potential for safe use of Cd-contaminated soil.
Collapse
Affiliation(s)
- Qiao Yang
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Hao Yu
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Chen Yang
- College of Resource and Environment, Shanxi Agricultural University, Taigu030801, People’s Republic of China
| | - Zhongqiu Zhao
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhengshan Ju
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Jinman Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhongke Bai
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| |
Collapse
|
4
|
Dong B, Hu J. Dissipation, residue distribution, and risk assessment of ethiprole and its metabolites in rice under various open field conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6510-6520. [PMID: 37219399 DOI: 10.1002/jsfa.12729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Ethiprole has been registered to control planthoppers in rice fields for many years in Asia. However, its dissipation and residues in rice under natural field conditions and health hazards are largely unclear. In the present study, a modified QuEChERS (i.e. Quick Easy Cheap Effective Rugged Safe) and high-performance liquid chromatography-tandem mass spectrometry method was established to detect ethiprole and its metabolites, ethiprole amide and ethiprole sulfone, in brown rice, rice husks, and rice straw. The field experiments were implemented in 12 representative provinces of China under Good Agricultural Practices aiming to investigate the fate and terminal residues of ethiprole and its metabolites in rice. Finally, the dietary risk of ethiprole was evaluated. RESULTS The average recoveries of these analytes in all matrices were 86.4-99.0% with a repeatability of 0.575-9.38%. The limits of quantification for each compound were 0.01 mg kg-1 . Dissipation of ethiprole followed the single first-order, first + first-order, and first-order multi-compartment kinetic models with a half-life of 2.68-8.99 days in rice husks. The dissipation half-life of ethiprole combining all metabolites was 5.20-16.2 days in rice husks. The terminal residues of ethiprole and its metabolites at preharvest intervals of 21 days were < 0.011, 0.25, and 0.20 mg kg-1 in brown rice, rice husks, and rice straw, respectively. Ethiprole amide was undetectable in all matrices, and the risk quotient of ethiprole was far less than 100%. CONCLUSION Ethiprole rapidly converted to ethiprole sulfone in rice, and ethiprole and ethiprole sulfone mainly remained in rice husks and straws. The dietary risk of ethiprole was acceptable for Chinese consumers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
5
|
Miao S, Wei Y, Pan Y, Wang Y, Wei X. Detection methods, migration patterns, and health effects of pesticide residues in tea. Compr Rev Food Sci Food Saf 2023; 22:2945-2976. [PMID: 37166996 DOI: 10.1111/1541-4337.13167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Due to its rich health benefits and unique cultural charm, tea drinking is increasingly popular with the public in modern society. The safety of tea is the top priority that affects the development of tea industry and the health of consumers. During the process of tea growth, pesticides are used to prevent the invasion of pests and diseases with maintaining high quality and stable yield. Because hot water brewing is the traditional way of tea consumption, water is the main carrier for pesticide residues in tea into human body accompanied by potential risks. In this review, pesticides used in tea gardens are divided into two categories according to their solubility, among which water-soluble pesticides pose a greater risk. We summarized the methods of the sample pretreatment and detection of pesticide residues and expounded the migration patterns and influencing factors of tea throughout the process of growth, processing, storage, and consumption. Moreover, the toxicity and safety of pesticide residues and diseases caused by human intake were analyzed. The risk assessment and traceability of pesticide residues in tea were carried out, and potential eco-friendly improvement strategies were proposed. The review is expected to provide a valuable reference for reducing risks of pesticide residues in tea and ensuring the safety of tea consumption.
Collapse
Affiliation(s)
- Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi Pan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P. R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
6
|
Wang Z, Luo F, Guo M, Yu J, Zhou L, Zhang X, Sun H, Yang M, Lou Z, Chen Z, Wang X. The metabolism and dissipation behavior of tolfenpyrad in tea: A comprehensive risk assessment from field to cup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162876. [PMID: 36933718 DOI: 10.1016/j.scitotenv.2023.162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
The metabolites of pesticides usually require rational risk assessment. In the present study, the metabolites of tolfenpyrad (TFP) in tea plants were identified using UPLC-QToF/MS analysis, and the transfer of TFP and its metabolites from tea bushes to consumption was studied for a comprehensive risk assessment. Four metabolites, PT-CA, PT-OH, OH-T-CA, and CA-T-CA, were identified, and PT-CA and PT-OH were detected along with dissipation of the parent TFP under field conditions. During processing, 3.11-50.00 % of TFP was further eliminated. Both PT-CA and PT-OH presented a downward trend (7.97-57.89 %) during green tea processing but an upward trend (34.48-124.17 %) during black tea manufacturing. The leaching rate (LR) of PT-CA (63.04-101.03 %) from dry tea to infusion was much higher than that of TFP (3.06-6.14 %). As PT-OH was no longer detected in tea infusions after 1 d of TFP application, TFP and PT-CA were taken into account in the comprehensive risk assessment. The risk quotient (RQ) assessment indicated a negligible health risk, but PT-CA posed a greater potential risk than TFP to tea consumers. Therefore, this study provides guidance for rational TFP application and suggests the sum of TFP and PT-CA residues as the maximum residual limit (MRL) in tea.
Collapse
Affiliation(s)
- Zihan Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mingming Guo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiawei Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
7
|
Zhang L, Sun Y, Xu Z, Liu F. Transformation kinetics and mechanism of gibberellic acid with ferrihydrite: Building a novel adsorption-transformation multi-step kinetic model. CHEMOSPHERE 2022; 292:133194. [PMID: 34914958 DOI: 10.1016/j.chemosphere.2021.133194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/07/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Gibberellic acid (GA3), a widely used phytohormone, is easily transformed into more toxic products. The soil and groundwater environment are an important sink for GA3, but its transformation catalyzed by soil minerals has not been studied. In this study, the transformation kinetics and mechanism of GA3 with ferrihydrite (Fh) were examined through kinetic batch experiments, microscopic-spectroscopic investigation and mathematical modeling. The results showed that rapid adsorption of GA3 on Fh occurred in the first 4 h, followed by a catalytic pseudo-first-order transformation of the parent compound and products generation (4 h-30 d). Fh predominantly enhanced the transformation of GA3 into Iso-GA3 which was further hydrolyzed into OH-GA3, in which adsorption was a prerequisite for transformation. The catalytic transformation likely resulted from the surface hydroxy of Fh, which not only stabilized the transformation intermediates by forming surface complexes with the carboxyl group of GA3 and its products, but also served as a powerful nucleophile to attack the γ-lactone of GA3 and Iso-GA3. Based on the catalytic isomerization and hydrolysis mechanism of GA3 with Fh, a novel adsorption-transformation multi-step kinetic conceptual model and mathematical model were developed. This model fitted the measured data well (R2 > 0.97) and the fitted parameters suggested that the transformation rate constants of the transformation of GA3 into Iso-GA3 and the transformation of Iso-GA3 into OH-GA3 were facilitated with Fh by ∼26 and ∼9 times, respectively. The multi-step kinetic model has great potential in simulating GA3 fate in soil and groundwater to assess its environmental health risk.
Collapse
Affiliation(s)
- Li Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China.
| | - Yajun Sun
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Zhimin Xu
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
8
|
Li X, Zhang J, Lin S, Xing Y, Zhang X, Ye M, Chang Y, Guo H, Sun X. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. PLANT, CELL & ENVIRONMENT 2022; 45:496-511. [PMID: 34719788 DOI: 10.1111/pce.14216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The tea plant, Camellia sinensis (L.) O. Kuntze, is an economically important, perennial woody plant rich in catechins. Although catechins have been reported to play an important role in plant defences against microbes, their roles in the defence of tea plants against herbivores remain unknown. In this study, we allowed the larvae of Ectropis grisescens, a leaf-feeding pest, to feed on the plants, and alternatively, we wounded the plants and then treated them with E. grisescens oral secretions (WOS). Both approaches triggered jasmonic acid-, ethylene- and auxin-mediated signalling pathways; as a result, plants accumulated three catechin compounds: (+)-catechin, epicatechin and epigallocatechin. Not only was the mass of E. grisescens larvae fed on plants previously infested with E. grisescens or treated with WOS significantly lower than that of larvae fed on controls, but also artificial diet supplemented with epicatechin, (+)-catechin or epigallocatechin gallate reduced larval growth rates. In addition, the exogenous application of jasmonic acid, ethylene or auxin induced the biosynthesis of the three catechins, which, in turn, enhanced the resistance of tea plants to E. grisescens, leading to the coordination of the three signalling pathways. Our results suggest that the three catechins play an important role in the defences of tea plants against E. grisescens.
Collapse
Affiliation(s)
- Xiwang Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Songbo Lin
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuxian Xing
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Meng Ye
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yali Chang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Huawei Guo
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xiaoling Sun
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
9
|
Jiang C, Han H, Dai J, Wang Z, Chai Y, Wang C, Liu X, Lu C, Chen H. Insights into stress degradation behavior of gibberellic acid by UHPLC Q-Exactive Orbitrap mass spectrometry. Food Chem 2021; 367:130662. [PMID: 34343799 DOI: 10.1016/j.foodchem.2021.130662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
Gibberellic acid (GA3) is widely applied in agriculture and food worldwide. Profiling the degradation products and their formation pattern under stress are helpful for deeply understanding GA3 regulating plant physiology and GA3 safety in agricultural crops. This study firstly investigated the degradation behavior of GA3. Different stress factors such as light, pH and temperatures were investigated through photolysis and hydrolysis experiments. Five degradation products were identified using ultra high-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry (UHPLC Q-Exactive Orbitrap MS). Three degradation products were produced under ultraviolet photolysis conditions. Two isomers (iso-GA3 and gibberellenic acid) were formed under alkaline conditions. In order to characterize each degradation product, complete mass fragmentation pathways of all analytes were initially established. These results could provide a practical reference for the safety of agricultural products and the guidance for scientific application of GA3 and proposed storage conditions of GA3.
Collapse
Affiliation(s)
- Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinxia Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
10
|
Soliman MM, Aldhahrani A, Gaber A, Alsanie WF, Shukry M, Mohamed WA, Metwally MMM. Impacts of n-acetyl cysteine on gibberellic acid-induced hepatorenal dysfunction through modulation of pro-inflammatory cytokines, antifibrotic and antioxidant activity. J Food Biochem 2021; 45:e13706. [PMID: 33749848 DOI: 10.1111/jfbc.13706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/28/2022]
Abstract
The extensive usage of gibberellic acid (GA3) in agriculture and plant growth is generally associated with enormous human and public health hazards. The present research assesses the impact of n-acetyl cysteine (NAC) on the hepatorenal injury persuaded by GA3 for this purpose, After two weeks of adaptation twenty-four rats allocated into four groups (6 rats/group) as follows: control group, supplied with saline only; n-acetyl cysteine (NAC) group, provided with 150 mg/kg/bw by stomach tube (orally) dissolved in saline; Positive GA3 group, received GA3 (55 mg/kg/bw) orally; Protective group received NAC (150 mg/kg/bw) and GA3 (55 mg/kg/bw) as in NAC and GA3 groups. Rats received their treatments for consecutive 3 weeks. On day 22, rats were anesthetized, then euthanized. Blood and tissue samples were obtained for biochemical, antioxidants markers analysis, gene expression, and histopathological examination. Our results revealed significant changes in serum AST, ALT, urea, uric acid, total protein, and albumin levels with a substantial rise of MDA and NO concentration in GA3 treated rats along with a considerable decrease of the GSH and overexpression of the inflammatory hepatic and renal cytokines (IL-10, TNF-α, NOS) and fibrotic gene expression TGF-β1, and α-SMA, with boost expression of nuclear factor-kappa (NFk B). NAC co-administered with GA3 significantly normalized the kidney and liver function and the antioxidant state, besides normal histological structure of both liver and kidney tissue and downregulated expression of the pro-inflammatory cytokines as well as, fibrogenic gene expression. PRACTICAL APPLICATIONS: The current study confirmed that GA3 induced hepto-renal dysfunction that was ameliorated by NAC administration. Moreover, our findings confirmed the antioxidant capability of n-acetyl cysteine and afford robust evidence about the ameliorative effect of the n-acetyl cysteine to attenuate the hepatorenal injury induced by gibberellic acid through modulation of the antioxidant defense system fibrogenic, and pro-inflammatory cytokines expression.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wafaa Abdou Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|