1
|
Marrero M, Monroig Ó, Pérez JA, Betancor MB, Galindo A, Bolaños A, Acosta NG, Rodríguez C. Dietary LC-PUFA and environmental salinity modulate the fatty acid biosynthesis capacity of the euryhaline teleost thicklip grey mullet (Chelon labrosus). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110865. [PMID: 37230375 DOI: 10.1016/j.cbpb.2023.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The capacity to biosynthesise long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) depends upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. The presence of a Δ5/Δ6 desaturase enabling the biosynthesis of docosahexaenoic acid (22:6n-3, DHA) through the "Sprecher pathway" has been reported in Chelon labrosus. Research in other teleosts have demonstrated that LC-PUFA biosynthesis can be modulated by diet and ambient salinity. The present study aimed to assess the combined effects of partial dietary replacement of fish oil (FO) by vegetable oil (VO) and reduced ambient salinity (35 ppt vs 20 ppt) on the fatty acid composition of muscle, enterocytes and hepatocytes of C. labrosus juveniles. Moreover, the enzymatic activity over radiolabelled [1-14C] 18:3n-3 (α-linolenic acid, ALA) and [1-14C] 20:5n-3 (eicosapentaenoic acid, EPA) to biosynthesise n-3 LC-PUFA in hepatocytes and enterocytes, and the gene regulation of the C. labrosus fatty acid desaturase-2 (fads2) and elongation of very long chain fatty acids protein 5 (elovl5) in liver and intestine was also investigated. Recovery of radiolabelled products including stearidonic acid (18:4n-3, SDA), 20:5n-3, tetracosahexaenoic acid (24:6n-3, THA) and 22:6n-3 in all treatments except FO35-fish, provided compelling evidence that a complete pathway enabling the biosynthesis of EPA and DHA from ALA is present and active in C. labrosus. Low salinity conditions upregulated fads2 in hepatocytes and elovl5 in both cell types, regardless of dietary composition. Interestingly, FO20-fish showed the highest amount of n-3 LC-PUFA in muscle, while no differences in VO-fish reared at both salinities were found. These results demonstrate a compensatory capacity of C. labrosus to biosynthesise n-3 LC-PUFA under reduced dietary supply, and emphasise the potential of low salinity conditions to stimulate this pathway in euryhaline fish.
Collapse
Affiliation(s)
- Manuel Marrero
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206 La Laguna, Spain.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - José A Pérez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206 La Laguna, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Ana Galindo
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206 La Laguna, Spain
| | - Ana Bolaños
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206 La Laguna, Spain
| | - N Guadalupe Acosta
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206 La Laguna, Spain
| | - Covadonga Rodríguez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206 La Laguna, Spain
| |
Collapse
|
2
|
Kabeya N, Kimura K, Matsushita Y, Suzuki S, Nagakura Y, Kinami R, Noda H, Takagi K, Okamoto K, Miwa M, Haga Y, Satoh S, Yoshizaki G. Determination of dietary essential fatty acids in a deep-sea fish, the splendid alfonsino Beryx splendens: functional characterization of enzymes involved in long-chain polyunsaturated fatty acid biosynthesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:425-439. [PMID: 37074473 DOI: 10.1007/s10695-023-01192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The splendid alfonsino Beryx splendens is a commercially important deep-sea fish in East Asian countries. Because the wild stock of this species has been declining, there is an urgent need to develop aquaculture systems. In the present study, we investigated the long-chain polyunsaturated fatty acid (LC-PUFA) requirements of B. splendens, which are known as essential dietary components in many carnivorous marine fish species. The fatty acid profiles of the muscles, liver, and stomach contents of B. splendens suggested that it acquires substantial levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from its natural diet. The functional characterization of a fatty acid desaturase (Fads2) and three elongases (Elovl5, Elovl4a, and Elovl4b) from B. splendens confirmed their enzymatic capabilities in LC-PUFA biosynthesis. Fads2 showed Δ6 and Δ8 bifunctional desaturase activities. Elovl5 showed preferential elongase activities toward C18 and C20 PUFA substrates, whereas Elovl4a and Elovl4b showed activities toward various C18-22 substrates. Given that Fads2 showed no Δ5 desaturase activity and no other fads-like sequence was found in the B. splendens genome, EPA and arachidonic acid cannot be synthesized from C18 precursors; hence, they can be categorized as dietary essential fatty acids in B. splendens. EPA can be converted into DHA in B. splendens via the so-called Sprecher pathway. However, given that fads2 is only expressed in the brain, it is unlikely that the capacity of B. splendens to biosynthesize DHA from EPA can fulfill its physiological requirements. These results will be useful to researchers developing B. splendens aquaculture methods.
Collapse
Affiliation(s)
- Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Kazunori Kimura
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Yoshiyuki Matsushita
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Satoshi Suzuki
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24 Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
| | - Yasuhiro Nagakura
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24 Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
| | - Ryuhei Kinami
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24 Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
- Aquaculture Research Institute, Kindai University, 1330 Takata, Shingu, Wakayama, 647-1101, Japan
| | - Hiroyuki Noda
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24 Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
| | - Koji Takagi
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24 Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
| | - Kazutoshi Okamoto
- Shizuoka Prefectural Research Institute of Fishery and Ocean, 136-24 Iwashigashima, Yaizu, Shizuoka, 425-0032, Japan
- Marine Open Innovation Institute, 2F Shimizu-Marine Bldg., 9-25 Hinodecho, Shimizu, Shizuoka, 424-0922, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Shuichi Satoh
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| |
Collapse
|
3
|
Sam KK, Lau NS, Kuah MK, Lading EA, Shu-Chien AC. A complete inventory of long-chain polyunsaturated fatty acid biosynthesis pathway enzymes in the miniaturized cyprinid Paedocypris micromegethes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:817-838. [PMID: 35643977 DOI: 10.1007/s10695-022-01082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The capacity for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis activity in a species depends on the enzymatic activities of fatty acyl desaturase (Fads) and elongation of very long-chain fatty acid (Elovl). The miniaturized fish Paedocypris micromegethes is a developmentally truncated cyprinid living in highly acidic water conditions in tropical peat swamps. The capacity for LC-PUFA biosynthesis in this species, which has a reduced genome size, is unknown. A high-quality de novo transcriptome assembly enabled the identification of a putative Fads2 and four Elovl. The Fads2 was verified as a P. micromegethes Fads2 ortholog with in vitro Δ5 and Δ6 activities. The Elovl sequences were established as an Elovl5, Elovl2, and two Elovl4 paralogs, namely Elovl4a and Elovl4b. These Elovl enzymes, mainly Elovl5 and Elovl2, fulfill the necessary C18, C20, and C22 PUFA elongation steps for LC-PUFA biosynthesis. Collectively, these results validate the presence of a complete repertoire of LC-PUFA biosynthesis enzymes in a peat swamp miniatured freshwater fish.
Collapse
Affiliation(s)
- Ka-Kei Sam
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Meng-Kiat Kuah
- Lab-Ind Resource Sdn. Bhd, 48300, Bukit Beruntung, Selangor, Malaysia
| | - Engkamat Anak Lading
- Forest Department Sarawak, Forest Department HQ, Level 11, Baitul Makmur II, Medan Raya, Petra Jaya, 93050, Kuching, Sarawak, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
4
|
Kyselová L, Vítová M, Řezanka T. Very long chain fatty acids. Prog Lipid Res 2022; 87:101180. [PMID: 35810824 DOI: 10.1016/j.plipres.2022.101180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Very long chain fatty acids (VLCFAs) are important components of various lipid classes in most organisms, from bacteria to higher plants and mammals, including humans. VLCFAs, or very long chain polyunsaturated fatty acids (VLCPUFAs), can be defined as fatty acids with 23 or more carbon atoms in the molecule. The main emphasis in this review is on the analysis of these acids, including obtaining standards from natural sources or their synthesis. Furthermore, the occurrence and analysis of these compounds in both lower (bacteria, invertebrates) and higher organisms (flowering plants or mammals) are discussed in detail. Attention is paid to their biosynthesis, especially the elongation of very long chain fatty acids protein (ELOVL4). This review deals with papers describing these very interesting compounds, whose chemical, biochemical and biological properties have not been fully explored.
Collapse
Affiliation(s)
- Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic.
| | - Milada Vítová
- Institute of Botany, Czech Academy of Sciences, Centre for Phycology, Dukelská 135, 379 01 Třeboň, Czech Republic.
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
5
|
Monroig Ó, Shu-Chien A, Kabeya N, Tocher D, Castro L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 2022; 86:101157. [DOI: 10.1016/j.plipres.2022.101157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
6
|
Influence of Dietary Lipids and Environmental Salinity on the n-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis Capacity of the Marine Teleost Solea senegalensis. Mar Drugs 2021; 19:md19050254. [PMID: 33946805 PMCID: PMC8146921 DOI: 10.3390/md19050254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023] Open
Abstract
Fish vary in their ability to biosynthesise long-chain polyunsaturated fatty acids (LC-PUFA) depending upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. It has been reported in Solea senegalensis the existence of a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid (DHA) from eicosapentaenoic acid (EPA), which can be modulated by the diet. The present study aims to evaluate the combined effects of the partial replacement of fish oil (FO) with vegetable oils and reduced environmental salinity in the fatty acid composition of relevant body compartments (muscle, hepatocytes and enterocytes), the enzymatic activity over α-linolenic acid (ALA) to form n-3 LC-PUFA through the incubation of isolated hepatocytes and enterocytes with [1-14C] 18:3 n-3, and the regulation of the S. senegalensis fads2 and elovl5 in the liver and intestine. The presence of radiolabelled products, including 18:4n-3, 20:4n-3 and EPA, provided compelling evidence that a complete pathway enabling the biosynthesis of EPA from ALA, establishing S. senegalensis, has at least one Fads2 with ∆6 activity. Dietary composition prevailed over salinity in regulating the expression of fads2, while salinity did so over dietary composition for elovl5. FO replacement enhanced the proportion of DHA in S. senegalensis muscle and the combination with 20 ppt salinity increased the amount of n-3 LC-PUFA in hepatocytes.
Collapse
|