1
|
Bogožalec Košir A, Muller S, Žel J, Milavec M, Mallory AC, Dobnik D. Fast and Accurate Multiplex Identification and Quantification of Seven Genetically Modified Soybean Lines Using Six-Color Digital PCR. Foods 2023; 12:4156. [PMID: 38002213 PMCID: PMC10670894 DOI: 10.3390/foods12224156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The proliferation of genetically modified organisms (GMOs) presents challenges to GMO testing laboratories and policymakers. Traditional methods, like quantitative real-time PCR (qPCR), face limitations in quantifying the increasing number of GMOs in a single sample. Digital PCR (dPCR), specifically multiplexing, offers a solution by enabling simultaneous quantification of multiple GMO targets. This study explores the use of the Naica six-color Crystal dPCR platform for quantifying five GM soybean lines within a single six-plex assay. Two four-color assays were also developed for added flexibility. These assays demonstrated high specificity, sensitivity (limit of detection or LOD < 25 copies per reaction) and precision (bias to an estimated copy number concentration <15%). Additionally, two approaches for the optimization of data analysis were implemented. By applying a limit-of-blank (LOB) correction, the limit of quantification (LOQ) and LOD could be more precisely determined. Pooling of reactions additionally lowered the LOD, with a two- to eight-fold increase in sensitivity. Real-life samples from routine testing were used to confirm the assays' applicability for quantifying GM soybean lines in complex samples. This study showcases the potential of the six-color Crystal dPCR platform to revolutionize GMO testing, facilitating comprehensive analysis of GMOs in complex samples.
Collapse
Affiliation(s)
- Alexandra Bogožalec Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Sabine Muller
- Stilla Technologies, Biopark 1, Mail du Professeur Georges Mathé, 94800 Villejuif, France
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Mojca Milavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Allison C. Mallory
- Stilla Technologies, Biopark 1, Mail du Professeur Georges Mathé, 94800 Villejuif, France
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Wang Z, Zhang Z, Luo W, Wang L, Han X, Zhao R, Liu X, Zhang J, Yu W, Li J, Yang Y, Zuo C, Xie G. Universal probe-based SNP genotyping with visual readout: a robust and versatile method. NANOSCALE 2023. [PMID: 37464941 DOI: 10.1039/d3nr01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Detection of single nucleotide polymorphisms (SNPs) is critical for personalized clinical diagnosis, treatment, and medication. Current clinical detection methods suffer from primer dimerization and require the redesigning of reaction systems for different targets, resulting in a time-consuming and laborious process. Here, we present a robust and versatile method for SNP typing by using tailed primers and universal small molecule probes in combination with a visualized lateral flow assay (LFA). This approach enables not only rapid typing of different targets, but also eliminates the interference of primer dimers and enhances the accuracy and reliability of the results. Our proposed universal assay has been successfully applied to the typing of four SNP loci of clinical samples to verify the accuracy and universality, and the results are consistent with those obtained by Sanger sequencing. Therefore, our study establishes a new universal "typing formula" using nucleic acid tags and small molecule probes that provides a powerful genotyping platform for genetic analysis and molecular diagnostics.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Zhang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Rong Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Xin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Jianhong Zhang
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wen Yu
- Chongqing University Cancer Hospital and Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Chen Zuo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, P.R. China.
| |
Collapse
|
3
|
Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Liu J, Wu D, Chen J, Jia S, Chen J, Wu Y, Li G. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Crit Rev Food Sci Nutr 2022; 64:2960-2985. [PMID: 36218189 DOI: 10.1080/10408398.2022.2128300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shijie Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
5
|
Collaborative Ring Trial of the Applicability of a Reference Plasmid DNA Calibrant in the Quantitative Analysis of GM Maize Event MON810. Foods 2022; 11:foods11111538. [PMID: 35681288 PMCID: PMC9180190 DOI: 10.3390/foods11111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Certified reference materials (CRMs) is one of the critical requirements in a quantitative analytical method, such as in the quantification of genetically modified (GM) contents in food/feed products. Plasmid-DNA-based CRMs are becoming essential in GM content quantification. Herein, we report the construction of one plasmid DNA calibrant, pMON810, for the quantification of the GM maize event MON810 which is commercially planted and used for food/feeds worldwide, and the collaborative ring trial was used to validate its applicability. pMON10 was proven to have high specificity for the MON810 event. The limit of detection (LOD) and limit of quantification (LOQ) of real-time PCR assays of MON810 event and maize endogenous gene using pMON810 as calibrant was 2 copies/μL and 5 copies/μL, respectively. A total of eight laboratories participated in the ring trial and returned valid test results. Each sample was performed with three repeats and three parallels in each repeat. Statistical analysis of the ring trial results showed that pMON810 as a calibrant had high PCR efficiency (ranging from 0.885 to 1.008) and good linearity (ranging from 0.9933 to 0.9997) in MON810 and endogenous gene real-time PCR assays. The bias between the test values and true values ranged from 4.60 to 20.00% in the quantification of five blind samples. These results indicate that pMON810 is suitable for use as a calibrant for the quantification of MON810 events in routine lab analysis or to evaluate detection methods for MON810, as well as being used as a substitute for the matrix-based CRM of MON810.
Collapse
|
6
|
Xu W, Shen P, Li R, Liu B, Yang L. Development of an Event-Specific Droplet Digital PCR Assay for Quantification and Evaluation of the Transgene DNAs in Trace Samples of GM PRNP-Knockout Goat. Foods 2022; 11:foods11060868. [PMID: 35327291 PMCID: PMC8953510 DOI: 10.3390/foods11060868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
The prion protein (PRNP) gene encoding prion protein is considered a prerequisite for the occurrence of scrapie disease, and knockout of the PRNP gene in transgenic goat is one effective approach to avoid scrapie. This study aims to establish an event-specific droplet digital polymerase chain reaction (ddPCR) assay to detect and quantify the content of genetically modified (GM) PRNP-knockout goat event KoP1. The developed ddPCR assay presents high specificity, sensitivity, accuracy, precision and wide dynamic range. The limits of detection and quantification were as low as 1.44 and 7.2 haploid genome equivalent (HGE) per reaction, respectively. Furthermore, this assay was successfully applied in quantifying the goat KoP1 GM content in milk, feces and living environmental soil samples. We believe that the developed ddPCR assay has the potential to be used in the evaluation of horizontal gene transfer and the practical risk assessment of GM goat event KoP1 and its derivatives.
Collapse
Affiliation(s)
- Wenting Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.X.); (R.L.)
| | - Ping Shen
- Development Center of Science and Technology, Ministry of Agriculture of People’s Republic of China, Beijing 100025, China;
| | - Rong Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.X.); (R.L.)
| | - Biao Liu
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China;
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.X.); (R.L.)
- Correspondence:
| |
Collapse
|