1
|
Singh S, Jha B, Tiwari P, Joshi VG, Mishra A, Malik YS. Recent approaches in the application of antimicrobial peptides in food preservation. World J Microbiol Biotechnol 2024; 40:315. [PMID: 39249587 DOI: 10.1007/s11274-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
Collapse
Affiliation(s)
- Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Pratiksha Tiwari
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Adarsh Mishra
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Yashpal Singh Malik
- ICAR-IVRI (Mukteswar Campus), Mukteswar, Nainital, Uttarakhand, 263138, India
| |
Collapse
|
2
|
Sisson HM, Jackson SA, Fagerlund RD, Warring SL, Fineran PC. Gram-negative endolysins: overcoming the outer membrane obstacle. Curr Opin Microbiol 2024; 78:102433. [PMID: 38350268 DOI: 10.1016/j.mib.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.
Collapse
Affiliation(s)
- Hazel M Sisson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Suzanne L Warring
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
3
|
Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S. Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens. Front Microbiol 2023; 14:1170418. [PMID: 37789862 PMCID: PMC10542408 DOI: 10.3389/fmicb.2023.1170418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.
Collapse
Affiliation(s)
- Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Ritam Das
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Bhakti Chavan
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
4
|
Yang H, Wang L, Yuan L, Du H, Pan B, Lu K. Antimicrobial Peptides with Rigid Linkers against Gram-Negative Bacteria by Targeting Lipopolysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15903-15916. [PMID: 36511360 DOI: 10.1021/acs.jafc.2c05921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of hybrid peptides were designed by connecting an antimicrobial peptide Ce(1-8) with a lipopolysaccharide (LPS)-targeting peptide Lf(28-34) via different linkers. Antimicrobial experimental results indicated that linkers play an essential role in the anti-Gram-negative bacterial activity of the hybrid peptides. Among these hybrid peptides, peptide CL5 with dipeptide rigid linker LP exhibited excellent activity and selectivity against Gram-negative bacteria. The minimum inhibitory concentrations of CL5 against the tested Gram-negative bacteria were 4-32 μM, while the toxicity toward HEK-293 cells was relatively low. It was found that the interactions of the peptides with LPS were crucial for peptide activity against Gram-negative bacteria. Antimicrobial mechanistic studies showed that peptide CL5 contributed to the death of Gram-negative bacterial cells by disrupting the integrity of the bacterial membranes. This study revealed the importance of linker selection in the design of hybrid peptides and provides the basis for the further development of antimicrobial peptides.
Collapse
Affiliation(s)
- Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lan Wang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Boyuan Pan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| |
Collapse
|
5
|
Ning H, Zhang J, Wang Y, Lin H, Wang J. Development of highly efficient artilysins against Vibrio parahaemolyticus via virtual screening assisted by molecular docking. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Xu Q, Liu S, Ji S, Wang Z, Wang M, Liu Y, Gong X, Fu B, Ye C, Chang H, Sui Z. Development and application of a flow cytometry-based method for rapid and multiplexed quantification of three foodborne pathogens in chicken breast. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
A Single Catalytic Endolysin Domain Plychap001: Characterization and Application to Control Vibrio Parahaemolyticus and Its Biofilm Directly. Foods 2022; 11:foods11111578. [PMID: 35681328 PMCID: PMC9180635 DOI: 10.3390/foods11111578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Endolysins are enzymes used by bacteriophages to cleave the host cell wall in the final stages of the lytic cycle. As such, they are considered promising antibacterial agents for controlling and combating multidrug-resistant (MDR) bacteria. However, the application of endolysins targeting Gram-negative bacteria is greatly hindered by the outer membrane on these bacteria. Lysqdvp001, an endolysin with modular structure, has been reported as one of the most efficient endolysins against the Gram-negative bacterium Vibrio parahaemolyticus. In this study, Plychap001, the truncated recombinant catalytic domain of Lysqdvp001, was demonstrated to exhibit a direct and efficient bactericidal activity against broad spectrum of V. parahaemolyticus strains. Plychap001 was shown to be highly stable and retain high bactericidal activity at high temperatures, over a wide pH range, and at high NaCl concentrations. Plychap001 also exhibited a synergistic lytic effect with EDTA. Additionally, Plychap001 was found to efficiently degrade and eliminate V. parahaemolyticus biofilms on polystyrene surfaces. Our study establishes Plychap001 as a promising method for controlling V. parahaemolyticus in the food industry.
Collapse
|
8
|
Fermentative production of alternative antimicrobial peptides and enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|