1
|
Chen LJ, Ying RN, Wang XQ, Xie DT, Dong J, Lin HY, Da-Wei W, Yang GF. Discovery of Triketone-Indazolones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1112-1121. [PMID: 39811931 DOI: 10.1021/acs.jafc.4c08544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure. The cocrystal structure of representative compound III-7 complexed with Arabidopsis thaliana HPPD (AtHPPD) was obtained at 2.0 Å resolution to guide the optimization of the designed inhibitor. The optimization results showed that 5-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,4-dimethyl-2-(3-(methylthio)phenyl)-1,2-dihydro-3H-indazol-3-one, III-15, was the most active AtHPPD inhibitor, with an IC50 value of 12 nM, nearly 30 times higher efficacy than mesotrione. Greenhouse herbicidal activity tests demonstrated that compound III-15 exhibited excellent herbicidal potency at 30-120 g ai/ha. Notably, it maintained high safety for peanuts even at 120 g ai/ha. Our results showed that compound III-15 is promising as a new candidate HPPD herbicide for use in the peanut fields.
Collapse
Affiliation(s)
- Li-Jun Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Ning Ying
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Xian-Quan Wang
- Shandong Cynda (chemical) CO., Ltd., Boxing Economic Development, Shandong, Binzhou 256500, PR China
| | - Ding-Tao Xie
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jin Dong
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Wang Da-Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Shi J, Gao S, Zhang PX, Zhang FH, Zhao LX, Ye F, Fu Y. Identification of novel dual-target 4-hydroxyphenylpyruvate dioxygenase & phytoene dehydrogenase inhibitors via multiple virtual screening. Int J Biol Macromol 2024; 276:133892. [PMID: 39019355 DOI: 10.1016/j.ijbiomac.2024.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Two important plant enzymes are 4-hydroxyphenylpyruvate dioxygenase (HPPD; EC 1.13.11.27), which is necessary for biosynthesis of plastoquinone and tocopherols, and phytoene dehydrogenase (PDS; EC 1.3.99.26), which plays an important role in colour rendering. Dual-target proteins that inhibit pigment synthesis will prevent resistant weeds and improve the spectral characteristics of herbicides. This study introduces virtual screening of pharmacophores based on the complex structure of the two targets. A three-dimensional database was established by screening 1,492,858 compounds based on the Lipinski principle. HPPD&PDS dual-target receptor-ligand pharmacophore models were then constructed, and nine potential dual-target inhibitors were obtained through pharmacophore modeling, molecular docking, and molecular dynamics simulations. Ultimately, ADMET prediction software yielded three compounds with high potential as dual-target herbicides. The obtained nine inhibitors were stable when combined with both HPPD and PDS proteins. This study offers guidance for the development of HPPD&PDS dual-target inhibitors with novel skeletons.
Collapse
Affiliation(s)
- Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, PR China
| | - Pan-Xiu Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Fang-Hao Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, PR China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, PR China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, PR China.
| |
Collapse
|
3
|
Ma T, Gao S, Zhao LX, Ye F, Fu Y. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Molecular Design to Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17125-17137. [PMID: 39047218 DOI: 10.1021/acs.jafc.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Weed resistance is a critical issue in crop production. Among the known herbicides, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are crucial for addressing weed resistance. HPPD inhibitors constitute a pivotal aspect of contemporary crop protection strategies. The advantages of these herbicides are their broad weed spectrum, flexible application, and excellent compatibility with other herbicides. They also exhibit satisfactory crop selectivity and low toxicity and are environmentally friendly. An increasing number of new HPPD inhibitors have been designed by combining computer-aided drug design with conventional design approaches. Herein, the molecular design and structural features of innovative HPPD inhibitors are reviewed to guide the development of new HPPD inhibitors possessing an enhanced biological efficacy.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Liu X, Zhang Y, Zou Y, Yan C, Chen J. Recent Advances and Outlook of Benzopyran Derivatives in the Discovery of Agricultural Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12300-12318. [PMID: 38800848 DOI: 10.1021/acs.jafc.3c09244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Scaffold structures, new mechanisms of action, and targets present enormous challenges in the discovery of novel pesticides. The discovery of new scaffolds is the basis for the continuous development of modern agrochemicals. Identification of a good scaffold such as triazole, carbamate, methoxy acrylate, pyrazolamide, pyrido-pyrimidinone mesoionic, and bisamide often leads to the development of a new series of pesticides. In addition, pesticides with the same target, including the inhibitors of succinate dehydrogenase (SDH), oxysterol-binding-protein, and p-hydroxyphenyl pyruvate dioxygenase (HPPD), may have the same or similar scaffold structure. Recent years have witnessed significant progress in the discovery of new pesticides using natural products as scaffolds or bridges. In recent years, there have been increasing reports on the application of natural benzopyran compounds in the discovery of new pesticides, especially osthole and coumarin. A systematic and comprehensive review of benzopyran active compounds in the discovery of new agricultural chemicals is helpful to promote the discussion and development of benzopyran active compounds. Therefore, this work systematically reviewed the research and application of benzopyran derivatives in the discovery of agricultural chemicals, summarized the antiviral, herbicidal, antibacterial, fungicidal, insecticidal, nematicidal and acaricidal activities of benzopyran active compounds, and discussed the structural-activity relationship and mechanism of action. In addition, some active fragments were recommended to further optimize the chemical structure of benzopyran active compounds based on reference information.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongchong Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Chen C, Lei Q, Geng W, Wang D, Gan X. Discovery of Novel Pyridazine Herbicides Targeting Phytoene Desaturase with Scaffold Hopping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12425-12433. [PMID: 38781442 DOI: 10.1021/acs.jafc.3c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Phytoene desaturase (PDS) is a critical functional enzyme in blocking ζ-carotene biosynthesis and is one of the bleaching herbicide targets. At present, norflurazon (NRF) is the only commercial pyridazine herbicide targeting PDS. Therefore, developing new and diverse pyridazine herbicides targeting PDS is urgently required. In this study, diflufenican (BF) was used as the lead compound, and a scaffold-hopping strategy was employed to design and synthesize some pyridazine derivatives based on the action mode of BF and PDS. The preemergence herbicidal activity tests revealed that compound 6-chloro-N-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenoxy)pyridazine-4-carboxamide (B1) with 2,4-diF substitution in the benzeneamino ring showed 100% inhibition rates against the roots and stems of Echinochloa crus-galli and Portulaca oleracea at 100 μg/mL, superior to the inhibition rates of BF. Meanwhile, compound B1 demonstrated excellent postemergence herbicidal activity against broadleaf weeds, which was similar to that of BF (inhibition rate of 100%) but superior to that of NRF. This indicated that 6-Cl in the pyridazine ring is the key group for postemergence herbicidal activity. In addition, compound B1 could induce downregulation of PDS gene expression, 15-cis-phytoene accumulation, and Y(II) deficiency and prevent photosynthesis. Therefore, B1 can be considered as a promising candidate for developing high-efficiency PDS inhibitors.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, PR China
| | - Qiong Lei
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Daoping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
6
|
Zhang CQ, Gao S, Bo L, Song HM, Liu LM, Zheng MX, Fu Y, Ye F. Design, Synthesis, and Biological Activity of Novel Triketone-Containing Phenoxy Nicotinyl Inhibitors of HPPD. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11321-11330. [PMID: 38714361 DOI: 10.1021/acs.jafc.3c08705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 μM, demonstrating superior activity compared with mesotrione (0.28 μM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.
Collapse
Affiliation(s)
- Chen-Qing Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lin Bo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hao-Min Song
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Ming Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Mei-Xin Zheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Leng XY, Pang QF, Ma YF, Ye BW, Ye F, Fu Y. Integrated Virtual Screening and Validation toward Potential HPPD Inhibition Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4587-4595. [PMID: 38408430 DOI: 10.1021/acs.jafc.3c06312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the most widely studied herbicide targets and has gained significant attention. To identify potential effective HPPD inhibitors, a rational multistep virtual screening workflow was built, which included CBP models (based on the receptor-ligand interactions in the crystal complex), Hypogen models with activity prediction ability (according to the derivation of structure-activity relationships from a set of molecules with reported activity values), and a consensus docking procedure (consisting of LibDock, Glide, and CDOCKER). About 1 million molecules containing diketone or β-keto-enol substructures were filtered by Lipinski's rules, CBP model, and Hypogen model. A total of 12 compounds with similar docking postures were generated by consensus docking. Eventually, four molecules were screened based on the specific binding pattern and affinity of the HPPD inhibitor. The biological evaluation in vivo displayed that compounds III-1 and III-2 exhibited comparable herbicidal activity to isoxaflutole and possessed superior safety on various crops (wheat, rice, sorghum, and maize). The ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) showed that compound III possessed relatively good toxicological results. This work provides a theoretical basis and valuable reference for the virtual screening and molecular design of novel HPPD inhibition herbicides.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Qi-Fan Pang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi-Fan Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Wen Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Cai ZM, Huang GY, Dong J, Chen LJ, Ye BQ, Lin HY, Wang DW, Yang GF. Discovery of Tetrazolamide-benzimidazol-2-ones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3884-3893. [PMID: 38375801 DOI: 10.1021/acs.jafc.3c06798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.
Collapse
Affiliation(s)
- Zhuo-Mei Cai
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Yi Huang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Jun Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bao-Qing Ye
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Da-Wei Wang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
9
|
Lu X, Xu H, Zhang X, Sun T, Lin Y, Li H, Li X, Zhang L, Duan H, Yang X, Ling Y. Target-Based Design, Synthesis, and Biological Evaluation of Novel 1,2,4-Triazolone Derivatives as Potential nAChR Modulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19333-19342. [PMID: 38050804 DOI: 10.1021/acs.jafc.3c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Novel agrochemicals have been successfully developed using target-based drug design (TBDD). To discover a novel, efficient, and highly selective nicotinic insecticide candidate, we developed a unified pharmacological model using TBDD by studying the binding modes of 11 nicotinic acetylcholine receptor (nAChR) modulators with acetylcholine binding protein (AChBP) targets for the first time. This model was used to design and develop a series of 1,2,4-triazolone derivatives. Bioassays demonstrated excellent insecticidal activities against Aphis glycines of compounds 4k (LC50 = 4.95 mg/L) and 4q (LC50 = 3.17 mg/L), and low toxicities to Apis mellifera. Additionally, compound 4q was stably bound to Aplysia californica AChBP, which was consistent with the pharmacological model obtained via molecular docking and molecular dynamics simulations. Therefore, compound 4q could be a potential lead candidate targeting nAChR. The explicit pharmacological model of nAChR modulators with Ac-AChBP in this study may facilitate the future rational design of eco-friendly nicotinic insecticides.
Collapse
Affiliation(s)
- Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yufan Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Honghong Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Jiang ZB, Gao S, Hu W, Sheng BR, Shi J, Ye F, Fu Y. Design, synthesis and biological activity of novel triketone herbicides containing natural product fragments. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105493. [PMID: 37532319 DOI: 10.1016/j.pestbp.2023.105493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) belongs to the non-heme Fe2+ - containing enzyme family and is an important enzyme in tyrosine decomposition. HPPD is crucial to the discovery of novel bleaching herbicides. To develop novel HPPD inhibitor herbicides containing the β-triketone motif, a series of 4-hydroxyl-3-(substituted aryl)-pyran-2-one derivatives were designed using the active fragment splicing method. The title compounds were synthesized and characterized through infrared spectroscopy (IR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry (HRMS). The X-ray diffraction method determined the single crystal structure of I-17. Preliminary bioassay data revealed that several novel compounds, especially I-12 and II-3, showed excellent herbicidal activity against broadleaf and monocotyledonous weeds at a dose of 150 g ai/ha. The results of crop selectivity and carotenoids determination indicated that compound I-12 is more suitable for wheat and cotton fields than mesotrione. Additionally, compound II-3 is safer for soybeans and peanuts than mesotrione. The inhibitory activity of Arabidopsis thaliana HPPD (AtHPPD) verified that compound II-3 showed the most activity with an IC50 value of 0.248 μM, which was superior to that of mesotrione (0.283 μM) in vitro. The binding mode of compound II-3 and AtHPPD was confirmed through molecular docking and molecular dynamics simulations. This study provides insights into the future development of natural and efficient herbicides.
Collapse
Affiliation(s)
- Zi-Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wei Hu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Ren Sheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Leng XY, Gao S, Ma YF, Zhao LX, Wang M, Ye F, Fu Y. Discovery of novel HPPD inhibitors: Virtual screening, molecular design, structure modification and biological evaluation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105390. [PMID: 37105629 DOI: 10.1016/j.pestbp.2023.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD, a Fe(II)/α-ketoglutarate dependent oxygenases), is a popular herbicide target. In this work, two pharmacophore models based on common molecular characteristics (HipHop) and receptor-ligand complex (CBP) were generated for virtual screening for HPPD inhibitors. About 1,000,000 molecules containing diketone structure from PubChem were filtered by Lipinski's rules to build a 3D database. Then the database was screened through combining HipHop model, CBP model, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction and molecular docking. Subsequently, based on the specific binding mode and affinity of HPPD inhibitors, 4 molecules with high -CDOCKER energy, good aqueous solubility and human safety predicative properties values were screened. From the screening results and combined with previous work, three novel HPPD inhibitors were designed and synthesized through fragment splicing and bioisosterism strategies. Compound IV-a exhibited similar inhibition of Arabidopsis thaliana HPPD (AtHPPD) and herbicidal activity as mesotrione. Crop selectivity showed that compound IV-a had better crop safety than mesotrione. Comparing the molecular properties, ADMET and molecular docking studies indicated that compounds IV-a exhibited better properties than mesotrione, which could be further modified as novel HPPD inhibitor herbicides.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi-Fan Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meng Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Nan JX, Dong J, Cao JQ, Huang GY, Shi XX, Wei XF, Chen Q, Lin HY, Yang GF. Structure-Based Design of 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor as a Potential Herbicide for Cotton Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5783-5795. [PMID: 36977356 DOI: 10.1021/acs.jafc.2c08448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most promising herbicide targets for the development of agricultural chemicals owing to its unique mechanism of action in plants. We previously reported on the co-crystal structure of Arabidopsis thaliana (At) HPPD complexed with methylbenquitrione (MBQ), an inhibitor of HPPD that we previously discovered. Based on this crystal structure, and in an attempt to discover even more effective HPPD-inhibiting herbicides, we designed a family of triketone-quinazoline-2,4-dione derivatives featuring a phenylalkyl group through increasing the interaction between the substituent at the R1 position and the amino acid residues at the active site entrance of AtHPPD. Among the derivatives, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(1-phenylethyl)quinazoline-2,4(1H,3H)-dione (23) was identified as a promising compound. The co-crystal structure of compound 23 with AtHPPD revealed that hydrophobic interactions with Phe392 and Met335, and effective blocking of the conformational deflection of Gln293, as compared with that of the lead compound MBQ, afforded a molecular basis for structural modification. 3-(1-(3-Fluorophenyl)ethyl)-6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (31) was confirmed to be the best subnanomolar-range AtHPPD inhibitor (IC50 = 39 nM), making it approximately seven times more potent than MBQ. In addition, the greenhouse experiment showed favorable herbicidal potency for compound 23 with a broad spectrum and acceptable crop selectivity against cotton at the dosage of 30-120 g ai/ha. Thus, compound 23 possessed a promising prospect as a novel HPPD-inhibiting herbicide candidate for cotton fields.
Collapse
Affiliation(s)
- Jia-Xu Nan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Jun-Qiao Cao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Yi Huang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xing-Xing Shi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xue-Fang Wei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Qiong Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
13
|
Yang D, Wang YE, Chen M, Liu H, Huo J, Zhang J. Discovery of Bis-5-cyclopropylisoxazole-4-carboxamides as Novel Potential 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5136-5142. [PMID: 36972477 DOI: 10.1021/acs.jafc.2c08912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) represents a potential target for novel herbicide development. To discover the more promising HPPD inhibitor, we designed and synthesized a series of bis-5-cyclopropylisoxazole-4-carboxamides with different linkers using a multitarget pesticide design strategy. Among them, compounds b9 and b10 displayed excellent herbicidal activities versus Digitaria sanguinalis (DS) and Amaranthus retroflexus (AR) with the inhibition of about 90% at the concentration of 100 mg/L in vitro, which was better than that of isoxaflutole (IFT). Furthermore, compounds b9 and b10 displayed the best inhibitory effect versus DS and AR with the inhibition of about 90 and 85% at 90 g (ai)/ha in the greenhouse, respectively. The structure-activity relationship study showed that the flexible linker (6 carbon atoms) is responsible for increasing their herbicidal activity. The molecular docking analyses showed that compounds b9 and b10 could more closely bind to the active site of HPPD and thus exhibited a better inhibitory effect. Altogether, these results indicated that compounds b9 and b10 could be used as potential herbicide candidates targeting HPPD.
Collapse
Affiliation(s)
- Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Miaomiao Chen
- Scientific Rescearch Academy, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Haiyan Liu
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
14
|
Zeng H, Zhang W, Wang Z, Gan X. Discovery of Novel Pyrazole Derivatives with Improved Crop Safety as 4-Hydroxyphenylpyruvate Dioxygenase-Targeted Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3950-3959. [PMID: 36848139 DOI: 10.1021/acs.jafc.2c07551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As one of the essential herbicide targets, 4-hydroxyphenylpyruvate dioxygenase (HPPD) has recently been typically used to produce potent new herbicides. In continuation with the previous work, several pyrazole derivatives comprising a benzoyl scaffold were designed and synthesized, and their inhibitory effects on Arabidopsis thaliana hydroxyphenylpyruvate dioxygenase (AtHPPD) and herbicidal activities were comprehensively evaluated in this study. Compound Z9 showed top-rank inhibitory activity to AtHPPD with an half-maximal inhibitory concentration (IC50) value of 0.05 μM, which was superior to topramezone (1.33 μM) and mesotrione (1.76 μM). Compound Z21 exhibited superior preemergence inhibitory activity against Echinochloa crusgalli, with stem and root inhibition rates of 44.3 and 69.6%, respectively, compared to topramezone (16.0 and 53.0%) and mesotrione (12.8 and 41.7%). Compounds Z5, Z15, Z20, and Z21 showed excellent postemergence herbicidal activities at a dosage of 150 g ai/ha, along with distinct bleaching symptoms and higher crop safety than topramezone and mesotrione, and they all were safe for maize, cotton, and wheat with injury rates of 0 or 10%. In addition, the molecular docking analysis also revealed that these compounds formed hydrophobic π-π interactions with Phe360 and Phe403 to AtHPPD. This study suggests that pyrazole derivatives containing a benzoyl scaffold could be used as new HPPD inhibitors to develop pre- and postemergence herbicides and be applied to additional crop fields.
Collapse
Affiliation(s)
- Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
15
|
Chotsaeng N. Design, Synthesis, and Structure-Activity Relationship (SAR) Studies of Ketone-Isobenzofuranone Hybrid Herbicides. Chem Biodivers 2023; 20:e202200932. [PMID: 36565431 DOI: 10.1002/cbdv.202200932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Thirty-five ketone-isobenzofuranone hybrids (1-35) were designed, synthesized, and evaluated for their herbicidal activity against Chinese amaranth (Amaranthus tricolor) and barnyard grass (Echinochloa crus-galli). The structure-activity relationship (SAR) results revealed that the position and type of substituent were crucial for activity. The o-substituted derivatives outperformed the m- and p-substituted derivatives. Compounds with strong electron-donating groups (OH, OMe) had low activity, while those with heterocycles (N-methylpyrrole, furan, and thiophene) had a moderate herbicidal effect. Compounds with a weak electron-donating group (Me) and weak, moderate, and strong electron-withdrawing groups (F, Cl, Br, and NO2 ) showed promising herbicidal activity. Among these, the o-F substituted compound (20) was the most effective against Chinese amaranth, and the o-Cl substituted compound (23) was the most potent against barnyard grass. This is the first time the herbicidal potential of ketone-isobenzofuranone hybrids has been studied. The discovery of current chemical clues would be beneficial for the development of novel herbicides.
Collapse
Affiliation(s)
- Nawasit Chotsaeng
- Department of Chemistry and Integrated Applied Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
16
|
Dong J, Dong J, Yu XH, Yan YC, Nan JX, Ye BQ, Yang WC, Lin HY, Yang GF. Discovery of Subnanomolar Inhibitors of 4-Hydroxyphenylpyruvate Dioxygenase via Structure-Based Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1170-1177. [PMID: 36599124 DOI: 10.1021/acs.jafc.2c06727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-potency 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are usually featured by time-dependent inhibition. However, the molecular mechanism underlying time-dependent inhibition by HPPD inhibitors has not been fully elucidated. Here, based on the determination of the HPPD binding mode of natural products, the π-π sandwich stacking interaction was found to be a critical element determining time-dependent inhibition. This result implied that, for the time-dependent inhibitors, strengthening the π-π sandwich stacking interaction might improve their inhibitory efficacy. Consequently, modification with one methyl group on the bicyclic ring of quinazolindione inhibitors was achieved, thereby strengthening the stacking interaction and significantly improving the inhibitory efficacy. Further introduction of bulkier hydrophobic substituents with higher flexibility resulted in a series of HPPD inhibitors with outstanding subnanomolar potency. Exploration of the time-dependent inhibition mechanism and molecular design based on the exploration results are very successful cases of structure-based rational design and provide a guiding reference for future development of HPPD inhibitors.
Collapse
Affiliation(s)
- Jin Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jiangqing Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xin-He Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jia-Xu Nan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Bao-Qin Ye
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
17
|
Zhou S, Zhao LT, Meng FF, Hua XW, Li YH, Liu B, Chen J, Chen AL, Li ZM. Synthesis, herbicidal activity and soil degradation of novel 5-substituted sulfonylureas as AHAS inhibitors. PEST MANAGEMENT SCIENCE 2022; 78:5313-5324. [PMID: 36054636 DOI: 10.1002/ps.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chlorsulfuron, metsulfuron-methyl and ethametsulfuron can damage sensitive crops in rotation pattern as a result of their long persistence in soil. To explore novel sulfonylurea (SU) herbicides with favorable soil degradation rates, four series of SUs were synthesized through a structure-based drug design (SBDD) strategy. RESULTS The target compounds, especially Ia, Id and Ie, exhibited prospective herbicidal activity against dicotyledon oil seed rape (Brassica campestris), amaranth (Amaranthus retroflexus), monocotyledon barnyard grass (Echinochloa crusgalli) and crab grass (Digitaria sanguinalis) at a concentration of 15 a.i. g ha-1 . Additionally, Ia, Id and Ig displayed excellent inhibitory effects against AtAHAS, with Kapp i values of 59.1, 34.5 and 71.8 μm, respectively, which were much lower than that of chlorsulfuron at 149.4 μm. The π-π stack and H-bonds between the Ia conformation and AtAHAS in the molecular docking results confirmed the series of compounds to be conventional AHAS inhibitors. In alkaline soil (pH = 8.46), compounds Ia-Ig revealed various degrees of acceleration in the degradation rate compared with chlorsulfuron. Besides, compound Ia showed considerable wheat and corn safety under postemergence at the concentration of 30, 60 and even 120 a.i. g ha-1 . CONCLUSION Overall, based on the synthetic procedure, herbicidal activity, soil degradation and crop safety, the Ia sulfonylureas series were chosen to be investigated as prospective AHAS inhibitors. The 5-dimethylamino group on SUs accelerated the degradation rate at different levels in alkaline soils which seems to be controllable in conventional cropping systems in their further application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Lv-Ting Zhao
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Fan-Fei Meng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Bin Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Fu YX, Zhang ZY, Guo WY, Dai YJ, Wang ZY, Yang WC, Yang GF. In vivo fluorescent screening for HPPD-targeted herbicide discovery. PEST MANAGEMENT SCIENCE 2022; 78:4947-4955. [PMID: 36054619 DOI: 10.1002/ps.7117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD), playing a critical role in vitamin E and plastoquinone biosynthesis in plants, has been recognized as one of the most important targets for herbicide discovery for over 30 years. Structure-based rational design of HPPD inhibitors has received more and more research interest. However, a critical challenge in the discovery of new HPPD inhibitors is the common inconsistency between molecular-level HPPD-based bioevaluation and the weed control efficiency in fields, due to the unpredictable biological processes of absorption, distribution, metabolism, and excretion. RESULTS In this study, we developed a fluorescent-sensing platform of efficient in vivo screening for HPPD-targeted herbicide discovery. The refined sensor has good capability of in situ real-time fluorescence imaging of HPPD in living cells and zebrafish. More importantly, it enabled the direct visible monitoring of HPPD inhibition in plants in a real-time manner. CONCLUSION We developed a highly efficient in vivo fluorescent screening method for HPPD-targeted herbicide discovery. This discovery not only offers a promising tool to advance HPPD-targeted herbicide discovery, but it also demonstrates a general path to develop the highly efficient, target-based, in vivo screening for pesticide discovery. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zi-Ye Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wu-Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Yi-Jie Dai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zheng-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
19
|
Chotpatiwetchkul W, Chotsaeng N, Laosinwattana C, Charoenying P. Structure-Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS OMEGA 2022; 7:29002-29012. [PMID: 36033657 PMCID: PMC9404509 DOI: 10.1021/acsomega.2c02704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 05/26/2023]
Abstract
Xanthoxyline (1), a small natural methyl ketone, was previously reported as a plant growth inhibitor. In this research, related methyl ketones bearing electron-donating and electron-withdrawing groups, together with heteroaromatics, were investigated against seed germination and seedling growth of Chinese amaranth (Amaranthus tricolor L.) and barnyard grass [Echinochloa crus-galli (L.) Beauv]. The structure-activity relationships (SARs) of methyl ketone herbicides were clarified, and which types and positions of substituents were crucially important for activity were also clarified. Indole derivatives, namely, 3-acetylindole (43) and 3-acetyl-7-azaindole (44) were found to be the most active methyl ketones that highly suppressed plant growth at low concentrations. The molecular docking on the 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme indicated that carbonyl, aromatic, and azaindole were key interactions of HPPD inhibitors. This finding would be useful for the development of small ketone herbicides.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nawasit Chotsaeng
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated
Applied Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chamroon Laosinwattana
- Department
of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
20
|
Shi J, Zhao LX, Wang JY, Ye T, Wang M, Gao S, Ye F, Fu Y. The novel 4-hydroxyphenylpyruvate dioxygenase inhibitors in vivo and in silico approach: 3D-QSAR analysis, molecular docking, bioassay and molecular dynamics. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Zeng H, Zhang W, Wang Z, Geng W, Feng G, Gan X. Novel Pyrazole Amides as Potential 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7400-7411. [PMID: 35687877 DOI: 10.1021/acs.jafc.2c02123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an important target for the development of new herbicides. HPPD inhibitors can hinder photosynthesis and induce weed death with bleaching symptoms. To explore the novel skeleton of HPPD inhibitors, a series of novel pyrazole amide derivatives were synthesized and evaluated for their inhibitory effects on Arabidopsis thaliana HPPD (AtHPPD) and herbicidal activities. Some compounds had excellent inhibitory activities against AtHPPD. Among them, compound B5 displayed top-rank inhibitory activity against AtHPPD with an IC50 value of 0.04 μM, which was obviously superior to that of topramezone (IC50 value of 0.11 μM). Furthermore, compounds B2 and B7 had 100% herbicidal activities in Petri dish assays against Portulaca oleracea and Amaranthus tricolor at 100 μg/mL. In particular, compound B7 not only possessed strong AtHPPD inhibitory activity but also exhibited significant preemergence herbicidal activity. However, compound B7 was completely harmless to soybean, cotton, and wheat. In addition, the molecular docking and microscale thermophoresis measurement experiment verified that compounds can bind well with AtHPPD via π-π interactions. The present work provides a new approach for the rational design of more effective HPPD inhibitors, and pyrazole amides could be used as useful substructures for the development of new HPPD inhibitors and preemergence herbicidal agents.
Collapse
Affiliation(s)
- Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wang Geng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
22
|
Governa P, Bernardini G, Braconi D, Manetti F, Santucci A, Petricci E. Survey on the Recent Advances in 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) Inhibition by Diketone and Triketone Derivatives and Congeneric Compounds: Structural Analysis of HPPD/Inhibitor Complexes and Structure-Activity Relationship Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6963-6981. [PMID: 35652597 DOI: 10.1021/acs.jafc.2c02010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
23
|
Yan YC, Wu W, Huang GY, Yang WC, Chen Q, Qu RY, Lin HY, Yang GF. Pharmacophore-Oriented Discovery of Novel 1,2,3-Benzotriazine-4-one Derivatives as Potent 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6644-6657. [PMID: 35618678 DOI: 10.1021/acs.jafc.2c01507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a functional protein existing in almost all aerobic organisms. In the field of agricultural chemicals, HPPD is acknowledged to be one of the crucial targets for herbicides at present due to its unique bio-function in plants. In the Auto Core Fragment in silico Screening (ACFIS) web server, a potential HPPD inhibitor featuring 1,2,3-benzotriazine-4-one was screened out via a pharmacophore-linked fragment virtual screening (PFVS) method. Molecular simulation studies drove the process of "hit-to-lead" optimization, and a family of 1,2,3-benzotriazine-4-one derivatives was synthesized. Consequently, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-5-methyl-3-(2-methylbenzyl)benzo[d][1,2,3]triazin-4(3H)-one (15bu) was identified to be the best HPPD inhibitor (IC50 = 36 nM) among the 1,2,3-benzotriazine-4-one derivatives, which had over 8-fold improvement of enzyme inhibition compared with the positive control mesotrione (IC50 = 289 nM). Crystallography information for the AtHPPD-15bu complex revealed several important interactions of the ligand bound upon the target protein, i.e., the bidentate chelating interaction of the triketone motif with the metal ion of AtHPPD, a tight π-π stacking interaction consisting of the1,2,3-benzotriazine-4-one moiety and two benzene rings of Phe-424 and Phe-381, and the polydirectional hydrophobic contacts consisting of the ortho-CH3-benzyl group of the core scaffold and some hydrophobic residues. Furthermore, compound 15bu displayed 100% inhibition against the five species of target weeds at the tested dosage, which was comparable to the weed control of mesotrione. Collectively, the fused 1,2,3-benzotriazine-4-one-triketone hybrid is a promising chemical tool for the development of more potent HPPD inhibitors and provides a valuable lead compound 15bu for herbicide innovation.
Collapse
Affiliation(s)
- Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wei Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
24
|
Wang JY, Gao S, Shi J, Cao HF, Ye T, Yue ML, Ye F, Fu Y. Virtual screening based on pharmacophore model for developing novel HPPD inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105109. [PMID: 35715048 DOI: 10.1016/j.pestbp.2022.105109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an important target for herbicide design. A multilayered virtual screening workflow was constructed by combining two pharmacophore models based on ligand and crystal complexes, molecular docking, molecular dynamics (MD), and biological activity determination to identify novel small-molecule inhibitors of HPPD. About 110, 000 compounds of Bailingwei and traditional Chinese medicine databases were screened. Of these, 333 were analyzed through docking experiments. Five compounds were selected by analyzing the binding pattern of inhibitors with amino acid residues in the active pocket. All five compounds could produce stable coordination with cobalt ion, and form favorable π-π interactions. MD simulation demonstrated that Phe381 and Phe424 made large contributions to the strength of binding. The enzyme activity experiment verified that compound-139 displayed excellent potency against AtHPPD (IC50 = 0.742 μM), however, compound-5222 had inhibitory effect on human HPPD (IC50 = 6 nM). Compound-139 exhibited herbicidal activity to some extent on different gramineous weeds. This work provided a strong insight into the design and development of novel HPPD inhibitor using in silico techniques.
Collapse
Affiliation(s)
- Jia-Yu Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Feng Cao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tong Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Li Yue
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Chen J, Wang Y, Luo X, Chen Y. Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105122. [PMID: 35715060 DOI: 10.1016/j.pestbp.2022.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The discovery of new scaffolds and targets for pesticides is still a huge challenge facing the sustainable development of modern agriculture. In recent years, quinazoline derivatives have achieved great progress in drug discovery and have attracted great attention. Quinazoline is a unique bicyclic scaffold with a variety of biological activities, which increases the possibilities and flexibility of structural modification, showing enormous appeal in the discovery of new pesticides. Therefore, the agricultural biological activities, structure-activity relationships (SAR), and mechanism of action of quinazoline derivatives in the past decade were reviewed systematically, with emphasis on SAR and mechanism. Then, we prospected the application of the quinazoline scaffold as a special structure in agricultural chemical discovery, hoping to provide new ideas for the rational design and mechanism of novel quinazoline agricultural chemicals in the future.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
26
|
Song HM, Zhao LX, Zhang SQ, Ye T, Fu Y, Ye F. Design, Synthesis, Structure-Activity Relationship, Molecular Docking, and Herbicidal Evaluation of 2-Cinnamoyl-3-Hydroxycyclohex-2-en-1-one Derivatives as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12621-12633. [PMID: 34677970 DOI: 10.1021/acs.jafc.1c04621] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cinnamic acid, isolated from cinnamon bark, is a natural product with excellent bioactivity, and it effectively binds with cyclohexanedione to form novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors. According to the active sub-structure combination principle, a series of novel 3-hydroxy-2-cinnamoyl-2-en-1-one derivatives were designed and synthesized. The title compounds were characterized by infrared, 1H NMR, 13C NMR, and HRMS. The in vitro inhibitory activity of AtHPPD verified that compound II-13 showed the most activity with a half-maximal inhibitory concentration (IC50) value of 0.180 μM, which was superior to that of mesotrione (0.206 μM) in vitro. The preliminary herbicidal activity tests demonstrated that some compounds had good herbicidal activity especially compound II-13 at a concentration of 150 g ai/ha. The binding mode of AtHPPD through molecular docking indicated that two oxygens of compounds II-13 formed bidentate interactions with metal ions, and the benzene ring formed π-π accumulation effects with Phe-381 and Phe-424. The results of molecular dynamics simulations showed that compound II-13 exhibited a more stable binding ability with AtHPPD than mesotrione. This study provided insights into the development of natural and efficient herbicides in the future.
Collapse
Affiliation(s)
- Hao-Min Song
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuai-Qi Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tong Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
27
|
Lin HY, Chen X, Dong J, Yang JF, Xiao H, Ye Y, Li LH, Zhan CG, Yang WC, Yang GF. Rational Redesign of Enzyme via the Combination of Quantum Mechanics/Molecular Mechanics, Molecular Dynamics, and Structural Biology Study. J Am Chem Soc 2021; 143:15674-15687. [PMID: 34542283 DOI: 10.1021/jacs.1c06227] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing demands for efficient and versatile chemical reactions have prompted innovations in enzyme engineering. A major challenge in engineering α-ketoglutarate-dependent oxygenases is to develop a rational strategy which can be widely used for directly evolving the desired mutant to generate new products. Herein, we report a strategy for rational redesign of a model enzyme, 4-hydroxyphenylpyruvate dioxygenase (HPPD), based on quantum mechanics/molecular mechanics (QM/MM) calculation and molecular dynamic simulations. This strategy enriched our understanding of the HPPD catalytic reaction pathway and led to the discovery of a series of HPPD mutants producing hydroxyphenylacetate (HPA) as the alternative product other than the native product homogentisate. The predicted HPPD-Fe(IV)═O-HPA intermediate was further confirmed by the crystal structure of Arabidopsis thaliana HPPD/S267W complexed with HPA. These findings not only provide a good understanding of the structure-function relationship of HPPD but also demonstrate a generally applicable platform for the development of biocatalysts.
Collapse
Affiliation(s)
- Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xi Chen
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Jin Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Han Xiao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ying Ye
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lin-Hui Li
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|