1
|
Shen C, Yu Y, Zhang X, Zhang H, Chu M, Yuan B, Guo Y, Li Y, Zhou J, Mao J, Xu X. The dynamic of physicochemical properties, volatile compounds and microbial community during the fermentation of Chinese rice wine with diverse cereals. Food Res Int 2024; 198:115319. [PMID: 39643362 DOI: 10.1016/j.foodres.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the impact of liquid state fermentation on the key flavor compounds and microbial community structure in Chinese rice wine brewed from five different raw materials: buckwheat, sorghum, japonica rice, glutinous rice, and black rice. Using HS-SPME-GC-MS and HPLC, the volatile compounds were analyzed across various grain liquefaction methods, detecting 82 volatiles, including esters, alcohols, aldehydes, and acids. The concentration of flavor compounds such as esters, amino acids, phenolic acids, and organic acids varied significantly depending on the raw material used. Based on odor activity values, 31 key compounds were identified, including 15 ethyl esters, like ethyl laurate, responsible for the unique and complex aroma of the rice wines. Bitter amino acids, making up over 50 % of the total amino acids, were predominant. Among the varieties, the buckwheat-fermented wine exhibited the highest ester content (27.39 mg/L), nearly double that of other samples, along with elevated amino acids (1.47 mg/mL) and phenolic acids (904.29 mg/L). Black rice ranked second in amino acid content (0.93 mg/mL), while glutinous rice had the highest organic acid content (239.76 mg/mL). Metagenomic sequencing on the fifth day of fermentation revealed significant differences in microbial community structure among the raw materials. Saccharomyces, Aspergillus, Thermomyces, Epicoccus, and Albertella were dominant fungi, while Weissella, Thermoactinomyces, Bacillus, and Saccharopolyspora were dominant bacteria. Sensory analysis showed that buckwheat-fermented rice wine was distinguished by its honey, floral, creamy, and umami attributes, while balancing alcohol, acidity, bitterness, and Qu aroma. The results demonstrate the significant influence of raw material selection and liquefaction method on both flavor profile and microbial diversity in Chinese rice wine.
Collapse
Affiliation(s)
- Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xue Zhang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Haoqiang Zhang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Mengjia Chu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Biao Yuan
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yinping Li
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jiandi Zhou
- National Engineering Research Center of Huangjiu, China Shaoxing Yellow Rice Wine Group Co., Ltd., Shaoxing 312000, China
| | - Jian Mao
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
De Iseppi A, Rocca G, Marangon M, Corich V, Arrigoni G, Porcellato D, Curioni A. Characterization and Identification of Yeast Peptides Released during Model Wine Fermentation and Lees Contact. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24749-24761. [PMID: 39436825 DOI: 10.1021/acs.jafc.4c06910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aging wine on lees results in the release of different yeast components, including peptides, whose role in wine is unclear. In this study, peptides released in a synthetic must, fermented with an oenological yeast strain, and aged on lees for 180 days were quantified (RP-HPLC) and identified (LC-MS/MS) at different time points. A rapid increase in peptide concentration was observed in the first two months, with over 2600 sequences identified. During the following four months, the peptide concentration remained constant, while their variety decreased slightly, probably due to enzymatic hydrolysis to which longer and less charged sequences were more exposed. The majority of the most abundant peptides were present over the 6-month period. They mostly originated from proteins associated with glycolysis and with different stress-response mechanisms, and they showed different in silico bioactivities. These findings can contribute to understanding the role of yeast peptides in regulating the wine environment during aging.
Collapse
Affiliation(s)
- A De Iseppi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy
| | - G Rocca
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Proteomics Center, University of Padova and Padova University Hospital, Via G. Orus 2/B, 35129 Padova, Italy
| | - M Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy
| | - V Corich
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy
- Department of Land, Environment, Agriculture & Forestry (TESAF), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - G Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Proteomics Center, University of Padova and Padova University Hospital, Via G. Orus 2/B, 35129 Padova, Italy
| | - D Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - A Curioni
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy
| |
Collapse
|
3
|
Yu H, Li Z, Zheng D, Chen C, Ge C, Tian H. Exploring microbial dynamics and metabolic pathways shaping flavor profiles in Huangjiu through metagenomic analysis. Food Res Int 2024; 196:115036. [PMID: 39614478 DOI: 10.1016/j.foodres.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
In the production of Huangjiu (Chinese rice wine), fermentation microbiota plays a crucial role in flavor formation. This study investigates the microbial dynamics and metabolic pathways that shape the flavor profiles of Huangjiu using different starters. Sensory evaluation and metabolite analysis of six starters revealed significant differences in ester, fruity, and sweet aromas. Saccharomyces, Aspergillus, and Rhizopus were identified as the dominant genera significantly impacting fermentation. Metagenomic species and functional gene annotations of Huangjiu starters elucidated the metabolic pathways for key flavor compounds synthesis pathways. Enzyme genes involved in these pathways were classified and annotated to microbial genera using the NR database, identifying 231 classes of relevant catalytic enzymes and 154 microbial genera. A metabolic relationship between flavor compound formation and different microbial genera was established using catalytic enzymes as a bridge. This study highlights the impact of starter composition on the final product and provides new insights for optimizing starters to enhance Huangjiu flavor quality.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Ziqing Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Danwei Zheng
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chang Ge
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
4
|
Bai W, Zhang L, Lin X, Zhao W, Liu G, Qian M, Li X, Wang H. Structural characterization, antioxidant and immunomodulatory activities of a polysaccharide from a traditional Chinese rice wine, Guangdong Hakka Huangjiu. Int J Biol Macromol 2024; 281:136523. [PMID: 39401636 DOI: 10.1016/j.ijbiomac.2024.136523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Hakka Huangjiu, a traditional Chinese rice wine, boasts a rich history and is known for its immunomodulatory, antibacterial, anti-aging and anti-fatigue effects. However, there is limited research on the primary active components and molecular mechanism of the bioactivity of Hakka Huangjiu. To address this gap, this study assessed the structural characteristics, antioxidant, and immunomodulatory activities of the polysaccharide-1 of Guangdong Hakka Huangjiu (HP1). Structural analysis revealed that HP1 had a low molecular weight polysaccharide of 5550 Da, primarily consisting of glucose (93.2 %), with smaller amounts of xylose, mannuronic acid and galactose. Methylation and NMR analysis suggested that the main glycosidic linkages present in HP1 are α-D-Glcp-(1→, →4)-α-D-Glcp-(1 → and →6) -α-D-Glcp-(1→. Furthermore, HP1 exhibited dose-dependent DPPH·, ABTS+ and OH· scavenging activity. HP1 exhibited significant protection of HepG2 cells from H2O2 damage. Additionally, HP1 induced the release of NO, TNF-α, IL-6 and iNOS in RAW264.7 cells. HP1 treatment significantly increased mRNA expression of TNF-α, IL-6, iNOS, COX-2, IL-1β and TGF-β1. These results suggested that polysaccharides HP1 may have potential as a novel natural antioxidant and immunomodulatory product for use in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaohui Lin
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Wenhong Zhao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Min Qian
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangluan Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
5
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Shen C, Li Q. Application of Strain Selection Technology in Alcoholic Beverages: A Review. Foods 2024; 13:1396. [PMID: 38731767 PMCID: PMC11083718 DOI: 10.3390/foods13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The diversity of alcohol beverage microorganisms is of great significance for improving the brewing process and the quality of alcohol beverage products. During the process of making alcoholic beverages, a group of microorganisms, represented by yeast and lactic acid bacteria, conducts fermentation. These microorganisms have complex synergistic or competitive relationships, and the participation of different microorganisms has a major impact on the fermentation process and the flavor and aroma of the product. Strain selection is one of the key steps. Utilizing scientific breeding technology, the relationship between strains can be managed, the composition of the alcoholic beverage microbial community can be improved, and the quality and flavor of the alcoholic beverage products can be increased. Currently, research on the microbial diversity of alcohol beverages has received extensive attention. However, the selection technology for dominant bacteria in alcohol beverages has not yet been systematically summarized. To breed better-quality alcohol beverage strains and improve the quality and characteristics of wine, this paper introduces the microbial diversity characteristics of the world's three major brewing alcohols: beer, wine, and yellow wine, as well as the breeding technologies of related strains. The application of culture selection technology in the study of microbial diversity of brewed wine was reviewed and analyzed. The strain selection technology and alcohol beverage process should be combined to explore the potential application of a diverse array of alcohol beverage strains, thereby boosting the quality and flavor of the alcohol beverage and driving the sustainable development of the alcoholic beverage industry.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
6
|
Ding L, Zheng X, Zhao L, Cai S. Identification of Novel Peptides in Distillers' Grains as Antioxidants, α-Glucosidase Inhibitors, and Insulin Sensitizers: In Silico and In Vitro Evaluation. Nutrients 2024; 16:1279. [PMID: 38732526 PMCID: PMC11085682 DOI: 10.3390/nu16091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Distillers' grains are rich in protein and constitute a high-quality source of various bioactive peptides. The purpose of this study is to identify novel bioactive peptides with α-glucosidase inhibitory, antioxidant, and insulin resistance-ameliorating effects from distiller's grains protein hydrolysate. Three novel peptides (YPLPR, AFEPLR, and NDPF) showed good potential bioactivities, and the YPLPR peptide had the strongest bioactivities, whose IC50 values towards α-glucosidase inhibition, radical scavenging rates of 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were about 5.31 mmol/L, 6.05 mmol/L, and 7.94 mmol/L, respectively. The glucose consumption of HepG2 cells treated with YPLPR increased significantly under insulin resistance condition. Moreover, the YPLPR peptide also had a good scavenging effect on intracellular reactive oxygen species (ROS) induced by H2O2 (the relative contents: 102.35% vs. 100%). Molecular docking results showed that these peptides could stably combine with α-glucosidase, ABTS, and DPPH free radicals, as well as related targets of the insulin signaling pathway through hydrogen bonding and van der Waals forces. This research presents a potentially valuable natural resource for reducing oxidative stress damage and regulating blood glucose in diabetes, thereby increasing the usage of distillers' grains peptides and boosting their economic worth.
Collapse
Affiliation(s)
- Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xiuqing Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
7
|
Chang R, Zhou Z, Dong Y, Xu Y, Ji Z, Liu S, Mao J. Sensory-Guided Isolation, Identification, and Active Site Calculation of Novel Umami Peptides from Ethanol Precipitation Fractions of Fermented Grain Wine (Huangjiu). Foods 2023; 12:3398. [PMID: 37761107 PMCID: PMC10527695 DOI: 10.3390/foods12183398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Huangjiu is rich in low-molecular-weight peptides and has an umami taste. In order for its umami peptides to be discovered, huangjiu was subjected to ultrafiltration, ethanol precipitation, and macroporous resin purification processes. The target fractions were gathered according to sensory evaluation. Subsequently, we used peptidomics to identify the sum of 4158 peptides in most umami fractions. Finally, six novel umami peptides (DTYNPR, TYNPR, SYNPR, RFRQGD, NFHHGD, and FHHGD) and five umami-enhancing peptides (TYNPR, SYNPR, NFHHGD, FHHGD, and TVDGPSH) were filtered via virtual screening, molecular docking, and sensory verification. Moreover, the structure-activity relationship was discussed using computational approaches. Docking analysis showed that all umami peptides tend to bind with T1R1 through hydrogen bonds and hydrophobic forces, which involve key residues HIS71, ASP147, ARG151, TYR220, SER276, and ALA302. The active site calculation revealed that the positions of the key umami residues D and R in the terminal may cause taste differences in identified peptides.
Collapse
Affiliation(s)
- Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Yong Dong
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
| | - Yuezheng Xu
- National Engineering Research Center for Huangjiu, Shaoxing 312000, China
| | - Zhongwei Ji
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center for Huangjiu, Shaoxing 312000, China
| |
Collapse
|
8
|
Wang L, Ming H, Chen Q, Pu H, Li X, Wang P, Zhu L, Yan J, Liu H. Analysis of Starch Structure and Pasting Characteristics of Millet Thick Wine during Fermentation. Foods 2023; 12:foods12091840. [PMID: 37174378 PMCID: PMC10178376 DOI: 10.3390/foods12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Starch is the main substrate in millet thick wine (MTW). In order to control the fermentation process of MTW, it is critical to monitor changes in the starch structure and physicochemical characteristics during the fermentation of MTW. In the present study, the structural characteristics of MTW starch were analyzed by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and rapid viscosity analysis (RVA). The results of SEM and CLSM showed that large starch granules in MTW swelled, developed cavities, and ruptured or even vanished with the prolongation of the fermentation time, whereas the size and shape of small starch granules barely changed, only falling off the pomegranate-seed-like aggregates. With the increase in fermentation time, the relative crystallinity of starch in MTW gradually increased. In addition, the short-range ordered structures underwent complex changes. Changes in the starch morphology and ordered structure led to an increase in the peak viscosity time and the initial gelatinization temperature. The present results reveal the beneficial effect of fermentation on MTW processing and suggest its potential applications in other millet-based fermented products.
Collapse
Affiliation(s)
- Lixia Wang
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710100, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huanyu Ming
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Chen
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710100, China
| | - Huayin Pu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihui Zhu
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710100, China
| | - Jing Yan
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710100, China
| | - Haoran Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
9
|
Zhou C, Zhou Y, Liu T, Li B, Hu Y, Zhai X, Zuo M, Liu S, Yang Z. Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine). Foods 2023; 12:foods12071458. [PMID: 37048279 PMCID: PMC10093938 DOI: 10.3390/foods12071458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Millet Huangjiu is a national alcoholic beverage in China. The quality of Chinese millet Huangjiu is significantly influenced by the protein components in the raw materials of millet. Therefore, in this study, the impact of different protein components on the quality of millet Huangjiu was investigated by adding exogenous proteins glutelin and albumin either individually or in combination. The study commenced with the determination of the oenological parameters of different millet Huangjiu samples, followed by the assessment of free amino acids and organic acids. In addition, the volatile profiles of millet Huangjiu were characterized by employing HS-SPME-GC/MS. Finally, a sensory evaluation was conducted to evaluate the overall aroma profiles of millet Huangjiu. The results showed that adding glutelin significantly increased the contents of total soluble solids, amino acid nitrogen, and ethanol in millet Huangjiu by 32.2%, 41.5%, and 17.7%, respectively. Furthermore, the fortification of the fermentation substrate with glutelin protein was found to significantly enhance the umami (aspartic and glutamic acids) and sweet-tasting (alanine and proline) amino acids in the final product. Gas chromatography-quadrupole mass spectrometry coupled with multivariate statistical analysis revealed distinct impacts of protein composition on the volatile organic compound (VOC) profiles of millet Huangjiu. Excessive glutelin led to an over-accumulation of alcohol aroma, while the addition of albumin protein proved to be a viable approach for enhancing the ester and fruity fragrances. Sensory analysis suggested that the proper amount of protein fortification using a Glu + Alb combination could enhance the sensory attributes of millet Huangjiu while maintaining its unique flavor characteristics. These findings suggest that reasonable adjustment of the glutelin and albumin contents in millet could effectively regulate the chemical composition and improve the sensory quality of millet Huangjiu.
Collapse
Affiliation(s)
- Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yaojie Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqian Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Identification of novel α-glucosidase inhibitory peptides in rice wine and their antioxidant activities using in silico and in vitro analyses. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Xia Y, Luo H, Wu Z, Zhang W. Microbial diversity in jiuqu and its fermentation features: saccharification, alcohol fermentation and flavors generation. Appl Microbiol Biotechnol 2022; 107:25-41. [DOI: 10.1007/s00253-022-12291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
|
12
|
Zhao W, Liang Z, Qian M, Li X, Dong H, Bai W, Wei Y, He S. Evolution of microbial communities during fermentation of Chi-flavor type Baijiu as determined by high-throughput sequencing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Yuan HW, Zhang C, Chen SY, Zhao Y, Tie Y, Yin LG, Jing C, Wu QD, Wang YT, Xu Z, Zhang LQ, Zuo Y. Effect of different moulds on oenological properties and flavor characteristics in rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Yu H, Wang X, Xie J, Ai L, Chen C, Tian H. Isolation and identification of bitter-tasting peptides in Shaoxing rice wine using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with taste orientation strategy. J Chromatogr A 2022; 1676:463193. [DOI: 10.1016/j.chroma.2022.463193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
|
15
|
Non-Alcoholic Components in Huangjiu as Potential Factors Regulating the Intestinal Barrier and Gut Microbiota in Mouse Model of Alcoholic Liver Injury. Foods 2022; 11:foods11111537. [PMID: 35681289 PMCID: PMC9180658 DOI: 10.3390/foods11111537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Different alcoholic beverages and drinking patterns might exert divergent impacts on alcoholic liver disease (ALD) progression. Whether the abundant non-alcoholic components (NAC) in fermented wine could alleviate ethanol (EtOH)-induced adverse influences on the liver remains unknown. Hence, the chronic ALD mouse model was established to compare the effects of Huangjiu (a typical fermented wine) and EtOH feeding on the liver, intestinal barrier, gut microbiota, and intestinal short-chain fatty acids (SCFAs) content. Although Huangjiu intake led to slight hepatic steatosis, it mitigated oxidative stress, inflammation, and intestinal damage relative to EtOH intake. In comparison with EtOH feeding, Huangjiu significantly improved the intestinal barrier integrity and reduced hepatic lipopolysaccharide levels by up-regulating the expression of intestinal tight junction proteins (ZO-1 and occludin) and antimicrobial activity peptides (Reg3β and Reg3γ). The administration of Huangjiu NAC partially restored alcohol-induced gut microbiota dysbiosis via recovering the abundance of Lactobacillus, Faecalibaculum, and Akkermansia. Moreover, mice receiving Huangjiu showed higher SCFAs levels (such as acetic acid and butyric acid) than those receiving EtOH. Huangjiu consumption resulted in lower hepatotoxicity than pure EtOH, at the same alcohol dose. The NAC in Huangjiu might attenuate the progression of ALD by regulating intestinal barrier function and microbiota-meditated gut ecology.
Collapse
|
16
|
Sáez V, Schober D, González Á, Arapitsas P. LC-MS-Based Metabolomics Discriminates Premium from Standard Chilean cv. Cabernet Sauvignon Wines from Different Valleys. Metabolites 2021; 11:metabo11120829. [PMID: 34940587 PMCID: PMC8707972 DOI: 10.3390/metabo11120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Cabernet Sauvignon grapes in Chile, mainly grown between the 30° S and 36° S, account for more than 30% of Chilean wine production, and yield wines with different characteristics which influence their quality. The aim of this study was to apply a liquid chromatography – mass spectrometry (LC–MS)-based metabolomic protocol to investigate the quality differentiation in a sample set of monovarietal wines from eight valleys covering 679 km of the north-south extension. All samples were produced using a standardized red winemaking process and classified according to a company categorization in two major groups: premium and standard, and each group in two subcategories. The results pointed out that N-containing metabolites (mainly small peptides) are promising biomarkers for quality differentiation. Moreover, the premium wines were characterized by higher amounts of anthocyanins and other glycosylated and acetylated flavonoids, as well as phenolic acids; standard quality wines, on the other hand, presented stilbenoids and sulfonated catabolites of tryptophan and flavanols.
Collapse
Affiliation(s)
- Vania Sáez
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele All’Adige, Italy;
| | - Doreen Schober
- Center for Research and Innovation, Viña Concha y Toro, Ruta K-650 Km 10, Pencahue 3550000, Chile; (D.S.); (Á.G.)
| | - Álvaro González
- Center for Research and Innovation, Viña Concha y Toro, Ruta K-650 Km 10, Pencahue 3550000, Chile; (D.S.); (Á.G.)
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele All’Adige, Italy;
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece
- Correspondence: or
| |
Collapse
|
17
|
Shi Y, Feng R, Mao J, Liu S, Zhou Z, Ji Z, Chen S, Mao J. Structural Characterization of Peptides From Huangjiu and Their Regulation of Hepatic Steatosis and Gut Microbiota Dysbiosis in Hyperlipidemia Mice. Front Pharmacol 2021; 12:689092. [PMID: 34220514 PMCID: PMC8243288 DOI: 10.3389/fphar.2021.689092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperlipidemia is a chronic disorder that is difficult to cure and usually treated with long-term lipid-reducing drugs. Recent trends have led to the use of diet therapies or food-derived strategies in the treatment of such long-term diseases. The Chinese rice wine (huangjiu) contains a wide range of bioactive peptides that are produced during the multi-species fermentation process. To clarify the regulation effects of lipid metabolism and gut microbiota by huangjiu bioactive peptides, three huangjiu peptides were isolated, purified and characterized by hyper-filtration, macroporous resin, gel filtration separation and structural identification. Meanwhile, a mouse model of high-fat diet-induced hyperlipidemia was established to study the effects of huangjiu peptides on serum biomarker, hepatic metabolism and gut microbiota dysbiosis. Experimental results showed that huangjiu peptides T1 and T2 (HpT1, HpT2) treatment alleviated the increase in serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and aberrant hepatic lipid accumulation in the high-fat diet-induced hyperlipidemia mice. Furthermore, HpT2 and HpT1 restored the α-diversity and structure of gut microbial community after hyperlipidemia-induced microbiota disturbance compared with simvastatin and HpT3. The administration of HpT2 and HpT1 regulated the microbiota-mediated gut ecology through alterations of characteristic taxa including Lactobacillus, Ileibacterium, Faecalibaculum and Alloprevotella by linear discriminant analysis effect size analysis. Collectively, our results offer new insights into the abilities of food-derived peptides on alleviation of high-fat diet-induced hyperlipidemia, hepatic steatosis and gut dysbiosis in mice.
Collapse
Affiliation(s)
- Ying Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Ruixue Feng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jieqi Mao
- College of Agriculture and Environmental Sciences, University of California, Davis, CA, United States
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China.,National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine CO., Ltd, Shaoxing, China
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Zhongwei Ji
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| |
Collapse
|