1
|
Wang Y, Du G, Zhang Y, Yu H, Liu S, Wang Z, Ma X, Wei X, Wen B, Li Z, Fan S, Xin F. Distinct Adjacent Substrate Binding Pocket Regulates the Activity of a Decameric Feruloyl Esterase from Bacteroides thetaiotaomicron. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23554-23566. [PMID: 39370616 DOI: 10.1021/acs.jafc.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Understanding how the human gut microbiota contribute to the metabolism of dietary carbohydrates is of great interest, particularly those with ferulic acid (FA) decorations that have manifold health benefits. Here, we report the crystal structure of a decameric feruloyl esterase (BtFae) from Bacteroides thetaiotaomicron in complex with methyl ferulate (MFA), revealing that MFA is situated in a noncatalytic substrate binding pocket adjacent to the catalytic pocket. Molecular docking and mutagenesis studies further demonstrated that the adjacent pocket affects substrate binding in the active site and negatively regulates the BtFae activity on both synthetic and natural xylan substrates. Additionally, quantum mechanics (QM) calculations were employed to investigate the catalytic process of BtFae from substrate binding to product release, and identified TS_2 in the acylation step is rate-limiting. Collectively, this study unmasks a novel regulatory mechanism of FAE activity, which may contribute to further investigation of FA-conjugated polysaccharides metabolism in the human gut.
Collapse
Affiliation(s)
- Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Yu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhaoxing Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Shilong Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
2
|
Ahdritz G, Bouatta N, Floristean C, Kadyan S, Xia Q, Gerecke W, O'Donnell TJ, Berenberg D, Fisk I, Zanichelli N, Zhang B, Nowaczynski A, Wang B, Stepniewska-Dziubinska MM, Zhang S, Ojewole A, Guney ME, Biderman S, Watkins AM, Ra S, Lorenzo PR, Nivon L, Weitzner B, Ban YEA, Chen S, Zhang M, Li C, Song SL, He Y, Sorger PK, Mostaque E, Zhang Z, Bonneau R, AlQuraishi M. OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat Methods 2024; 21:1514-1524. [PMID: 38744917 DOI: 10.1038/s41592-024-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (1) tackle new tasks, like protein-ligand complex structure prediction, (2) investigate the process by which the model learns and (3) assess the model's capacity to generalize to unseen regions of fold space. Here we report OpenFold, a fast, memory efficient and trainable implementation of AlphaFold2. We train OpenFold from scratch, matching the accuracy of AlphaFold2. Having established parity, we find that OpenFold is remarkably robust at generalizing even when the size and diversity of its training set is deliberately limited, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced during training, we also gain insights into the hierarchical manner in which OpenFold learns to fold. In sum, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial resource for the protein modeling community.
Collapse
Affiliation(s)
- Gustaf Ahdritz
- Department of Systems Biology, Columbia University, New York, NY, USA
- Harvard University, Cambridge, MA, USA
| | - Nazim Bouatta
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | | | - Sachin Kadyan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Qinghui Xia
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - William Gerecke
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Daniel Berenberg
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Ian Fisk
- Flatiron Institute, New York, NY, USA
| | | | - Bo Zhang
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | - Stella Biderman
- EleutherAI, New York, NY, USA
- Booz Allen Hamilton, McLean, VA, USA
| | | | - Stephen Ra
- Prescient Design, Genentech, New York, NY, USA
| | | | | | | | | | | | - Minjia Zhang
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | | | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Zhao Zhang
- Rutgers University, New Brunswick, NJ, USA
| | | | | |
Collapse
|
3
|
Zhou H, Shi S, You Q, Zhang K, Chen Y, Zheng D, Sun J. Polyethylene Terephthalate Hydrolases in Human Gut Microbiota and Their Implications for Human Health. Microorganisms 2024; 12:138. [PMID: 38257965 PMCID: PMC10820491 DOI: 10.3390/microorganisms12010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Polyethylene terephthalate (PET), primarily utilized for food and beverage packaging, consistently finds its way into the human gut, thereby exerting adverse effects on human health. PET hydrolases, critical for the degradation of PET, have been predominantly sourced from environmental microbial communities. Given the fact that the human gut harbors a vast and intricate consortium of microorganisms, inquiry into the presence of potential PET hydrolases within the human gut microbiota becomes imperative. In this investigation, we meticulously screened 22,156 homologous sequences that could potentially encode PET hydrolases using the hidden Markov model (HMM) paradigm, drawing from 4984 cultivated genomes of healthy human gut bacteria. Subsequently, we methodically validated the hydrolytic efficacy of five selected candidate PET hydrolases on both PET films and powders composed of micro-plastics (MPs). Notably, our study also unveiled the influence of both diverse PET MP powders and their resultant hydrolysates on the modulation of cytokine expression in macrophages. In summary, our research underscores the ubiquitous prevalence and considerable potential of the human gut microbiota in PET hydrolysis. Furthermore, our study significantly contributes to the holistic evaluation of the potential health hazards posed by PET MPs to human well-being.
Collapse
Affiliation(s)
- Heqi Zhou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.Z.); (Q.Y.); (K.Z.); (Y.C.); (D.Z.)
| | - Songbiao Shi
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Qiuhong You
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.Z.); (Q.Y.); (K.Z.); (Y.C.); (D.Z.)
| | - Kaikai Zhang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.Z.); (Q.Y.); (K.Z.); (Y.C.); (D.Z.)
| | - Yuchuan Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.Z.); (Q.Y.); (K.Z.); (Y.C.); (D.Z.)
| | - Dekai Zheng
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.Z.); (Q.Y.); (K.Z.); (Y.C.); (D.Z.)
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (H.Z.); (Q.Y.); (K.Z.); (Y.C.); (D.Z.)
| |
Collapse
|
4
|
Du G, Wang Y, Zhang Y, Yu H, Liu S, Ma X, Cao H, Wei X, Wen B, Li Z, Fan S, Zhou H, Xin F. Structural insights into the oligomeric effects on catalytic activity of a decameric feruloyl esterase and its application in ferulic acid production. Int J Biol Macromol 2023; 253:126540. [PMID: 37634773 DOI: 10.1016/j.ijbiomac.2023.126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Oligomeric feruloyl esterase (FAE) has great application prospect in industry due to its potentially high stability and fine-tuned activity. However, the relationship between catalytic capability and oligomeric structure remains undetermined. Here we identified and characterized a novel, cold-adapted FAE (BtFae) derived from Bacteroides thetaiotaomicron. Structural studies unraveled that BtFae adopts a barrel-like decameric architecture unique in esterase families. By disrupting the interface, the monomeric variant exhibited significantly reduced catalytic activity and stability toward methyl ferulate, potentially due to its impact on the flexibility of the catalytic triad. Additionally, our results also showed that the monomerization of BtFae severely decreased the ferulic acid release from de-starched wheat bran and insoluble wheat arabinoxylan by 75 % and 80 %, respectively. Collectively, this study revealed novel connections between oligomerization and FAE catalytic function, which will benefit for further protein engineering of FAEs at the quaternary structure level for improved industrial applications.
Collapse
Affiliation(s)
- Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Yu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Cao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Shilong Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China.
| |
Collapse
|
5
|
Zhang X, Li L, Zheng Q. Dissecting the Effect of Temperature on Hyperthermophilic Pf2001 Esterase Dimerization by Molecular Dynamics. J Chem Inf Model 2023; 63:4762-4771. [PMID: 37452749 DOI: 10.1021/acs.jcim.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Pf2001 esterase (Pf2001) from Pyrococcus furiosus has hyperthermophilic properties and exerts a biocatalytic function in a dimeric state. Crystal structures revealed that the structural rearrangement of the cap domain is responsible for the Pf2001 dimer formation. However, the details of the cap domain remodeling and the effects of temperature on the dimerization process remain elusive at the molecular level, taking into account that experimental methods are difficult to capture the dynamic process of dimerization to some extent. Herein, four dimer models based on the monomeric crystal structure (PDB ID: 5G59) were constructed to investigate the conformational transition details and temperature effects in the dimerization by conventional molecular dynamics and accelerated molecular dynamics simulations. Our simulation results indicate that the monomer undergoes a conformational change into a "preparatory state" at high temperatures, which is more favorable for its transformation into a stable dimer. The subsequent free energy landscape analysis further identifies four intermediate states (from separated state to dimeric state) and discloses that a more accessible α-helix driven by stronger hydrophobic interactions induces a rearrangement of the cap domain, displaying a "tic-tac-toe" activation feature that is important for stabilizing the dimer interface and facilitating the formation of hydrophobic pockets. In addition, the electrostatic potential surface analysis illustrates that the weaker electrostatic repulsion (Lys and Arg) in the dimer interface at high temperatures is also a key factor for dimer stabilization. Altogether, our results can provide molecular-level insight into the dimer formation process of hyperthermophilic esterase and would be useful to understand the enzymatic specificity of α/β-hydrolase.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Lei Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
6
|
Role of N-Terminal Extensional Long α-Helix in the Arylesterase from Lacticaseibacillus rhamnosus GG on Catalysis and Stability. Catalysts 2023. [DOI: 10.3390/catal13020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
In the α/β hydrolases superfamily, the extra module modulated enzymatic activity, substrate specificity, and stability. The functional role of N-terminal extensional long α-helix (Ala2-Glu29, designated as NEL-helix) acting as the extra module in the arylesterase LggEst from Lacticaseibacillus rhamnosus GG had been systemically investigated by deletion mutagenesis, biochemical characterization, and biophysical methods. The deletion of the NEL-helix did not change the overall structure of this arylesterase. The deletion of the NEL-helix led to the shifting of optimal pH into the acidity and the loss of thermophilic activity. The deletion of the NEL-helix produced a 10.6-fold drop in catalytic activity towards the best substrate pNPC10. NEL-Helix was crucial for the thermostability, chemical resistance, and organic solvents tolerance. The deletion of the NEL-helix did not change the overall rigidity of enzyme structure and only reduced the local rigidity of the active site. Sodium deoxycholate might partially replenish the loss of activity caused by the deletion of the NEL-helix. Our research further enriched the functional role of the extra module on catalysis and stability in the α/β hydrolase fold superfamily.
Collapse
|
7
|
Ma J, Ma Y, Li Y, Sun Z, Sun X, Padmakumar V, Cheng Y, Zhu W. Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation. World J Microbiol Biotechnol 2022; 39:17. [PMID: 36409385 DOI: 10.1007/s11274-022-03466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Feruloyl esterase (FAE; EC 3.1.1.73) cleaves the ester bond between ferulic acid (FA) and sugar, to assist the release of FAs and degradation of plant cell walls. In this study, two FAEs (Fae13961 and Fae16537) from the anaerobic fungus Pecoramyces sp. F1 were heterologously expressed in Pichia pastoris (P. pastoris). Compared with Fae16537, Fae13961 had higher catalytic efficiency. The optimum temperature and pH of both the FAEs were 45 ℃ and 7.0, respectively. They showed good stability-Fae16537 retained up to 80% activity after incubation at 37 ℃ for 24 h. The FAEs activity was enhanced by Ca2+ and reduced by Zn2+, Mn2+, Fe2+ and Fe3+. Additionally, the effect of FAEs on the hydrolytic efficiency of xylanase and cellulase was also determined. The FAE Fae13961 had synergistic effect with xylanase and it promoted the degradation of xylan substrates by xylanase, but it did not affect the degradation of cellulose substrates by cellulase. When Fae13961 was added in a mixture of xylanase and cellulase to degrade complex agricultural biomass, it significantly enhanced the mixture's ability to disintegrate complex substrates. These FAEs could serve as superior auxiliary enzymes for other lignocellulosic enzymes in the process of degradation of agricultural residues for industrial applications.
Collapse
Affiliation(s)
- Jing Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuping Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoni Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Shen Y, Wang Y, Wei X, Wen B, Liu S, Tan H, Zhang J, Shao S, Xin F. Engineering the Active Site Pocket to Enhance the Catalytic Efficiency of a Novel Feruloyl Esterase Derived From Human Intestinal Bacteria Dorea formicigenerans. Front Bioeng Biotechnol 2022; 10:936914. [PMID: 35795165 PMCID: PMC9251316 DOI: 10.3389/fbioe.2022.936914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The human gut microbiota play essential roles in metabolism and human health, especially by enzymatically utilizing dietary fiber that the host cannot directly digest and releasing functional components including short-chain fatty acids (SCFAs) and hydroxycinnamic acids (e.g., ferulic acid). In our previous study, seven potential feruloyl esterase (FAE) genes were identified from the gut microbiota. In the current work, one of the genes encoding a novel FAE (DfFAE) from Dorea formicigenerans of Firmicutes was bacterially expressed, purified and characterized. The 30.5 kDa type-A DfFAE has an optimum pH and temperature of 8.4 and 40 °C, respectively, exhibiting a higher substrate specificity toward short-chain acyl-ester substrate (pNPA). The AlphaFold2 based ab initio structural modeling revealed a five α-helices cap domain that shaped an unusually narrow and deep active site pocket containing a specific substrate access tunnel in DfFAE. Furthermore, rational design strategy was subjected to the active site pocket in an aim of improving its enzymatic activities. The mutants V252A, N156A, W255A, P149A, and P186A showed 1.8 to 5.7-fold increase in catalytic efficiency toward pNPA, while W255A also exhibited altered substrate preference toward long-chain substrate pNPO (45.5-fold). This study highlighted an unusual active site architecture in DfFAE that influenced its substrate selectivity and illustrated the applicability of rational design for enhanced enzymatic properties.
Collapse
Affiliation(s)
- Yang Shen
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huishuang Tan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingjian Zhang
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Shuli Shao
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- *Correspondence: Fengjiao Xin, ; Shuli Shao,
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Fengjiao Xin, ; Shuli Shao,
| |
Collapse
|
9
|
The replacement of main cap domain to improve the activity of a ZEN lactone hydrolase with broad substrate spectrum. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|