1
|
He S, Li L, Yao Y, Su J, Lei S, Zhang Y, Zeng H. Bile acid and its bidirectional interactions with gut microbiota: a review. Crit Rev Microbiol 2024; 50:684-701. [PMID: 37766478 DOI: 10.1080/1040841x.2023.2262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingning Yao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Yang D, Shen J, Tang C, Lu Z, Lu F, Bie X, Meng F, Zhao H. Prevention of high-fat-diet-induced obesity in mice by soluble dietary fiber from fermented and unfermented millet bran. Food Res Int 2024; 179:113974. [PMID: 38342528 DOI: 10.1016/j.foodres.2024.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Obesity-related diabetes, cardiovascular disease, and hypertension pose many risks to human health. Thus, mice on a high-fat diet were gavaged with millet bran (unfermented/fermented) soluble dietary fiber (RSDF/FSDF, 500 mg·kg-1) for 10 weeks in current research, and then evaluated the various biological indicators. These findings revealed that RSDF and FSDF supplements could prevent fat synthesis by inhibiting sterol regulatory element-binding protein-1c gene expression. The RSDF supplements can also accelerate fat catabolism through enhanced the mRNA expression levels of adipose triglyceride lipase and peroxisome proliferator-activated receptor α. FSDF supplements can prevent obesity by decreasing 3-hydroxy-3-methyl-glutaryl-CoA reductase expression and increasing cholesterol 7α-hydroxylase expression. Moreover, FSDF also controls obesity development by lowering total cholesterol and low-density lipoprotein cholesterol levels in the blood, triglyceride, total cholesterol, and bile acid levels in the liver. Notably, FSDF supplements can promote Bacteroides and Prevotella propagation; excretive propionic acid binds to free fatty acid receptor 2/3 and then stimulates intestinal epithelial cells to generate glucagon-like-peptide-1 and peptide YY, which can reduce food and energy intake and ultimately prevent obesity. All evidence suggests that FSDF supplements play a crucial role in preventing obesity.
Collapse
Affiliation(s)
- Duo Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
3
|
Fu Q, Zhao J, Rong S, Han Y, Liu F, Chu Q, Wang S, Chen S. Research Advances in Plant Protein-Based Products: Protein Sources, Processing Technology, and Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15429-15444. [PMID: 37824166 DOI: 10.1021/acs.jafc.3c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plant proteins are high-quality dietary components of food products. With the growing interest in sustainable and healthy food alternatives, plant proteins have gained significant attention as viable substitutes for animal-based proteins. Understanding the diversity of protein sources derived from plants, novel processing technology, and multiple applications is crucial for developing nutritious and sustainable plant protein-based products. This Review summarizes the natural sources of traditional and emerging plant proteins. The classifications, processing technologies, and applications of plant protein-based products in the food industry are explicitly elucidated. Moreover, the advantages and disadvantages of plant protein-based food products are revealed. Strategies such as protein fortification and complementation to overcome these shortcomings are critically discussed. We also demonstrate several issues that need to be addressed in future development.
Collapse
Affiliation(s)
- Qi Fu
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling 712199, China
| | - Qianmei Chu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Suqing Wang
- School of Nursing, Wuhan University, Wuhan 430071, China
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, Wuhan, China
| |
Collapse
|
4
|
Zhou H, Liu K, Liu W, Wu M, Wang Y, Lv Y, Meng H. Diets Enriched in Sugar, Refined, or Whole Grain Differentially Influence Plasma Cholesterol Concentrations and Cholesterol Metabolism Pathways with Concurrent Changes in Bile Acid Profile and Gut Microbiota Composition in ApoE -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37307383 DOI: 10.1021/acs.jafc.3c00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to compare the effects of diets enriched in sugar, refined grain (RG), or whole grain (WG) on circulating cholesterol concentrations and established and emerging mechanisms regulating cholesterol metabolism. Forty-four male ApoE-/- mice aged 8 weeks were randomly fed an isocaloric sugar-, RG-, or WG-enriched diet for 12 weeks. Compared to WG-enriched diet, fasting plasma LDL-C and HDL-C concentrations were higher and the mRNA expression of intestinal LXR-α was lower in sugar- and RG-enriched diets; plasma TC, non-HDL-C, TG and VLDL-C concentrations, and cecal concentrations of lithocholic acid were higher and the mRNA expression of intestinal ABCG5 was lower in sugar-enriched diet, and the mRNA expression of hepatic IDOL and cecal concentrations of lithocholic and deoxycholic acids was higher in RG-enriched diet. The relative abundance of Akkermansia, Clostridia_UCG-014, Alistipes, and Alloprevotella, which were lower in sugar- and/or RG- than in WG-enriched diet, had inverse correlations with fasting plasma cholesterol concentrations or cecal concentrations of secondary bile acids and positive correlations with gene expressions in intestinal cholesterol efflux. Conversely, the relative abundance of Lactobacillus, Lachnoclostridium, Lachnospiraceae_NK4A136_group, Colidextribacter, and Helicobacter had reverse correlations. Both sugar- and RG-enriched diets had unfavorable effects on cholesterol concentrations; yet, their effects on the gene expressions of cholesterol efflux, uptake, bile acid synthesis, and bile acid concentrations were distinctive and could be partially attributable to the concurrent changes in gut microbiota.
Collapse
Affiliation(s)
- Haiyan Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Ke Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Wenjing Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Man Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Yin Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Yiqian Lv
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Huicui Meng
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, Guangdong, P. R. China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
5
|
Transcriptome and targeted metabolome analysis provide insights into bile acids' new roles and mechanisms on fat deposition and meat quality in lamb. Food Res Int 2022; 162:111941. [DOI: 10.1016/j.foodres.2022.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
|
6
|
Fu Y, Chen B, Liu Z, Wang H, Zhang F, Zhao Q, Zhu Y, Yong X, Shen Q. Effects of different foxtail millet addition amounts on the cognitive ability of mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wang Z, Liu H, Li L, Li Y, Yan H, Yuan Y. Modulation of Disordered Bile Acid Homeostasis and Hepatic Tight Junctions Using Salidroside against Hepatocyte Apoptosis in Furan-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10031-10043. [PMID: 35939816 DOI: 10.1021/acs.jafc.2c04654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Furan, a processing-induced food contaminant, has attracted great attention due to its hepatotoxicity. To further investigate the underlying mechanism of salidroside (SAL) alleviating furan-induced liver damage, we divided Balb/c mice into the control group, the furan (8 mg/kg/day) group, and three groups of three different doses of SAL (10/20/40 mg/kg/day) in the current research. The shifted serum profile was observed through untargeted metabonomics, to which the bile acid metabolism was related, and the alleviating effect of SAL against furan-induced apoptosis was caused by the metabolism. Target bile acid quantification for the liver and serum showed that SAL positively regulated the homeostasis of bile acids disturbed by furan. Meanwhile, SAL significantly upregulated the synthesis genes of bile acids (Cyp7a1, Cyp7b1, Cyp8b1, and Cyp27a1) and the uptake transport genes (Ntcp and Oatps) and downregulated the efflux transport genes (Bsep, Ost-α, Ost-β, Mrp2, and Mrp4). Transmission electron microscopy of the bile canaliculi and tight junctions and the levels of tight junction marker proteins (ZO-1, occludin, and claudin-1) confirmed that the disruption of the hepatic tight junction was inhibited by SAL. The connection between the apoptosis- and tight junction-related proteins was observed through the construction of a protein-protein interaction network. SAL suppressed the furan-induced hepatocyte apoptosis evidenced by the detection of TUNEL and Bax, Bcl-2, and caspase-3 levels. Taken together, SAL alleviated furan-induced hepatocyte apoptosis via altering the disordered homeostasis of bile acids and hepatic tight junctions.
Collapse
Affiliation(s)
- Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yucai Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
Zhao Q, Liu Z, Zhu Y, Wang H, Dai Z, Yang X, Ren X, Xue Y, Shen Q. Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Front Nutr 2022; 9:918696. [PMID: 35782919 PMCID: PMC9241564 DOI: 10.3389/fnut.2022.918696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Adzuki bean is widely consumed in East Asia. Although the positive effects of its biologically active ingredients on obesity have been confirmed, the role of whole cooked adzuki bean in preventing obesity and the relationship between the effects and gut microbiota remain unclear. Mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) with or without 15% cooked adzuki bean for 12 weeks. Cooked adzuki bean significantly inhibited weight gain and hepatic steatosis, reduced high levels of serum triacylglycerol (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and alleviated systemic inflammation and metabolic endotoxemia in mice fed a HFD. Importantly, cooked adzuki bean regulated gut microbiota composition, decreased the abundance of lipopolysaccharide (LPS)-producing bacteria (Desulfovibrionaceae,Helicobacter,and Bilophila), and HFD-dependent taxa (Deferribacteraceae, Ruminiclostridium_9, Ruminiclostridium, Mucispirillum, Oscillibacter, Enterorhabdus, Tyzzerella, Anaerotruncus, Intestinimonas, unclassified_f_Ruminococcaceae, Ruminiclostridium_5, and Ruminococcaceae), and enriched Muribaculaceae, norank_f_Muribaculaceae, Anaeroplasma, Lachnospiraceae_NK4A136_group, and Lachnospiraceae to alleviate inflammation and metabolic disorders induced by HFD. These findings provide new evidence for understanding the anti-obesity effect of cooked adzuki bean.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- *Correspondence: Qun Shen,
| |
Collapse
|
9
|
Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
10
|
Tian S, Wang Y, Li X, Liu J, Wang J, Lu Y. Sulforaphane Regulates Glucose and Lipid Metabolisms in Obese Mice by Restraining JNK and Activating Insulin and FGF21 Signal Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13066-13079. [PMID: 34706542 DOI: 10.1021/acs.jafc.1c04933] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The most common complications of obesity are metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), hyperglycemia, and low-grade inflammation. Sulforaphane (SFN) is a hydrolysate of glucosinolate (GLS) that is found in large quantities in cruciferous vegetables. The objective of this research was to evaluate the mechanism by which SFN relieves obesity complications in obese mice. C57BL/6J mice were fed a high-fat diet to induce obesity and treated daily with 10 mg/(kg body weight (bw)) SFN for 8 weeks, while a positive control group was treated daily with 300 mg/(kg bw) metformin. Our results indicated that SFN attenuated NAFLD, inflammation, oxidative stress, adipose tissue hypertrophy, and insulin resistance, as well as regulated glucose and lipid metabolism. SFN regulated glucose and lipid metabolism by deactivating c-Jun N-terminal kinase (JNK) and blocking the inhibitory effect of the insulin signaling pathway. SFN also regulated glucose metabolism by alleviating fibroblast growth factor 21 (FGF21) resistance. Our research provides an empirical basis for clinical treatment with SFN in obesity.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| |
Collapse
|