1
|
Zhang Z, Niu J, Wang J, Zheng Q, Miao W, Lin Q, Li X, Jin Z, Qiu C, Sang S, Ji H. Advances in the preparation and application of cyclodextrin derivatives in food and the related fields. Food Res Int 2024; 195:114952. [PMID: 39277230 DOI: 10.1016/j.foodres.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Cyclodextrin (CD) derivatives have recently gained worldwide attention, which have versatile advantages and restrained the defects of parent CDs. The superior properties of CD derivatives in encapsulation, stabilization, and solubilization facilitate their application in food, biomedicine, daily chemicals, and textiles. In this review, the preparation, classification, and main benefits of CD derivatives are systematically introduced. By introducing targeted groups into the parent CD molecule, they exhibit significant improvement in their required characteristic. Besides, the important point closely related to application, the safety assessment, has also been highlighted. Most tested CD derivatives have been verified to be relatively safe in a limited dosage. Then, the applications of CD derivatives have been described in detail from the food to its related field. In food field, CD derivatives play an important role in the stability and bioavailability of bioactive compounds, control flavor release, and improve the antimicrobial and antioxidant properties of packaging materials. These advantages can also be expanded to the related field, offering innovative solutions that enhance product quality, human health, and environmental sustainability. This review highlights the broad applications and potential of CD derivatives, underscoring their role in driving advancements across multiple industries.
Collapse
Affiliation(s)
- Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingxian Niu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jilong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiaoxin Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenbo Miao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianzhu Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Hu Y, Rees NH, Qiu C, Wang J, Jin Z, Wang R, Zhu Y, Chen H, Wang P, Liu S, Ren F, Williams GR. Fabrication of zein/modified cyclodextrin nanofibers for the stability enhancement and delivery of curcumin. Food Hydrocoll 2024; 156:110262. [DOI: 10.1016/j.foodhyd.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
3
|
Zhang Z, Jiang H, Chen G, Miao W, Lin Q, Sang S, McClements DJ, Jiao A, Jin Z, Wang J, Qiu C. Fabrication and characterization of polydopamine-mediated zein-based nanoparticle for delivery of bioactive molecules. Food Chem 2024; 451:139477. [PMID: 38678664 DOI: 10.1016/j.foodchem.2024.139477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
In this study, a combination of whey protein (hydrophilic coating) and polydopamine (crosslinking agent) was used to improve the stability and functionality of quercetin-loaded zein nanoparticles. There are two key benefits of the core-shell nanoparticles formed. First, the ability of the polydopamine to bind to both zein and whey protein facilitates the formation of a stable core-shell structure, thereby protecting quercetin from any pro-oxidants in the aqueous surroundings. Second, neutral and hydrophilic whey proteins were used for the surface coating of the nanoparticles to further enhance the sustained and slow release of quercetin, facilitating its sustained release into the body at a slow and steady rate. The results of this study will promote the innovative development of precise nutritional delivery systems for zein and provide a theoretical basis for the design and development of dietary supplements based on hydrophobic food nutrient molecules.
Collapse
Affiliation(s)
- Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Han Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guo Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenbo Miao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianzhu Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | | | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Hu Y, Xing K, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Xu X, Wang J, Jin Z, Qiu C. Cyclodextrin carboxylate improves the stability and activity of nisin in a wider range of application conditions. NPJ Sci Food 2023; 7:20. [PMID: 37210414 DOI: 10.1038/s41538-023-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/13/2023] [Indexed: 05/22/2023] Open
Abstract
Nisin is a natural bacteriocin that exhibits good antibacterial activity against Gram-positive bacteria. It has good solubility, stability, and activity under acidic conditions, but it becomes less soluble, stable, and active when the solution pH exceeds 6.0, which severely restricted the industrial application range of nisin as antibacterial agent. In this study, we investigated the potential of complexing nisin with a cyclodextrin carboxylate, succinic acid-β-cyclodextrin (SACD), to overcome the disadvantages. Strong hydrogen bonding was shown between the nisin and SACD, promoting the formation of nisin-SACD complexes. These complexes exhibited good solubility under neutral and alkaline conditions, and good stability after being held at high pH values during processing with high-steam sterilization. Moreover, the nisin-SACD complexes displayed significantly improved antibacterial activity against model Gram-positive bacteria (S. aureus). This study shows that complexation can improve the efficacy of nisin under neutral and alkaline situations, which may greatly broaden its application range in food, medical, and other industries.
Collapse
Affiliation(s)
- Yao Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Kequan Xing
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, 169 Qixing South Road, Ningbo, Zhejiang, 315832, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
5
|
Zhang Z, Li X, Sang S, Julian McClements D, Chen L, Long J, Jiao A, Jin Z, Qiu C. Preparation, properties and interaction of curcumin loaded zein/HP-β-CD nanoparticles based on electrostatic interactions by antisolvent co-precipitation. Food Chem 2023; 403:134344. [DOI: 10.1016/j.foodchem.2022.134344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
|
6
|
Yang QQ, Cai WQ, Wang ZX, Li Y, Zhang Y, Lin X, Su BL, Corke H, Zhang BB. Structural characteristics, binding behaviors, and stability of ternary nanocomplexes of lecithin, polyvinylpyrrolidone, and curcumin. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Construction of functional soybean peptide–cyclodextrin carboxylate nanoparticles and their interaction with porcine pancreatic α-amylase. Food Res Int 2022; 162:112054. [DOI: 10.1016/j.foodres.2022.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
|
8
|
Li W, Xu W, Zhang S, Li J, Zhou J, Tian D, Cheng J, Li H. Supramolecular Biopharmaceutical Carriers Based on Host-Guest Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12746-12759. [PMID: 36094144 DOI: 10.1021/acs.jafc.2c04822] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional drugs have the disadvantages of poor permeability and low solubility, which makes the utilization of pesticides lower and brings many side effects. With the continuous development of supramolecular chemistry in recent years, it has also played an irreplaceable role in the field of pharmaceutical science. Supramolecular macrocycles, such as crown ethers, cyclodextrins, calixarenes, pillararenes and cucurbiturils, are potentially good candidates for drug carriers due to their biocompatibility, hydrophobic cavity and ease of derivatization. The encapsulation of drugs based on host-guest interaction has the advantage of being adjustable and reversible as well as improving the low availability of drugs. Here, the recent advances in methods and strategies for drug encapsulation and release based on supramolecular macrocycles with host-guest interactions have been systematically summarized, laying a bright foundation for the development of novel nanopesticide preparations in the future and pointing out future directions of novel biopesticide research.
Collapse
Affiliation(s)
- Wenjie Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Jia Li
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| |
Collapse
|
9
|
Hu Y, Julian McClements D, Li X, Chen L, Long J, Jiao A, Xie F, Wang J, Jin Z, Qiu C. Improved art bioactivity by encapsulation within cyclodextrin carboxylate. Food Chem 2022; 384:132429. [PMID: 35219238 DOI: 10.1016/j.foodchem.2022.132429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Artemisinin (Art) is a natural sesquiterpene lactone that is claimed to exhibit various bioactivities. The poor solubility of Art in both water and oil hinders its application in formulations intended for oral administration. In this study, we investigated the potential of forming a host-guest complex between Art and succinic acid modified cyclodextrin (SACD) to improve its solubility characteristics. Art-SACD inclusion complexes (2:1 M ratio) were successfully formed in water, which was attributed to the relatively large cavity size of SACD, as well as the intermolecular interactions between the Art and succinic acid branches in the cavity. The thermal stability of the Art was retained after incorporation into the Art-SACD complexes, which may be useful for applications such as pasteurization or cooking. The encapsulated Art showed antibacterial activity against both Gram-positive and Gram-negative bacteria. Such encapsulation technology allows Art to be introduced into oral delivery systems in a bioactive form.
Collapse
Affiliation(s)
- Yao Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu 210037, China
| | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Xie
- Shandong Zhushi Pharmaceutical Group Co., LTD, Heze 274300, China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Lu J, Li X, Qiu C, McClements DJ, Jiao A, Wang J, Jin Z. Preparation and Characterization of Food-Grade Pickering Emulsions Stabilized with Chitosan-Phytic Acid-Cyclodextrin Nanoparticles. Foods 2022; 11:foods11030450. [PMID: 35159600 PMCID: PMC8834252 DOI: 10.3390/foods11030450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023] Open
Abstract
This study aimed to fabricate food-grade Pickering emulsions stabilized by chitosan-phytic acid-β-cyclodextrin (CS-PA-CD) nanoparticles. The CS-PA-CD nanoparticles were characterized with FITR, XRD, and TGA to prove its successfully crosslinking, then characterized by DLS system and scanning electron microscopy showing the smallest average particle size was 434.2 ± 2.5 nm and it increased with the ratio of PA-CD to CS increasing. Pickering emulsions stabilized by CS-PA-CD nanoparticles was prepared and it showed the best stability at around pH 6. The particle concentration higher than 1.0% (w/v) and the oil fraction above 0.5% (v/v) could reach the emulsion stability. In addition, the Pickering emulsions were stable at various temperature (30–70 °C) and influenced by the certain change of ionic strength (0–500 mM). These CS-PA-CD Pickering emulsions showed great application in the formation of functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- Jiaxin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | | | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China;
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
- Correspondence:
| |
Collapse
|
11
|
Hu Y, Guo C, Lin Q, Hu J, Li X, Sang S, McClements DJ, Long J, Jin ZY, Wang J, Qiu C. Complexation of curcumin with cyclodextrins adjusts its binding to plasma proteins. Food Funct 2022; 13:8920-8929. [DOI: 10.1039/d2fo01531e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin shows poor bioaccessibility due to its poor water solubility that limiting its application in aqueous formulations, and the weak binding to plasma proteins that hindering its transportation to targeted...
Collapse
|
12
|
Hu Y, Qiu C, Julian McClements D, Qin Y, Long J, Jiao A, Li X, Wang J, Jin Z. Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chem 2021; 376:131869. [PMID: 34971893 DOI: 10.1016/j.foodchem.2021.131869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Curcumin is commonly used as a nutraceutical in functional food and beverage formulations because of various biological activities. Typically, curcumin is encapsulated in edible nanoparticles or microparticles to improve its water-dispersibility, chemical stability, and bioavailability. In this study, a succinic acid-modified cyclodextrin (SACD) was fabricated and applied as a carrier for curcumin. Curcumin-loaded SACD (Cur-SACD) with a molar ratio of 1:1 and an encapsulation efficiency > 80% was formed spontaneously basing on hydrogen bonding between the aromatic ring of the curcumin and the hydrophobic cavity of the SACD. Cur-SACD exhibited excellent stability against long-time storage, UV-irradiation, and pasteurization, as well as against physiological conditions including body temperature, physiological salt concentrations, stomach and intestinal pH. This study suggests that Cur-SACD systems may be suitable for increasing the water-dispersibility, stability, and bioavailability of hydrophobic compounds intended for oral administration, such as those used in the food, supplement, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yao Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Yang Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu 210037, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|