1
|
Liu Y, Han X, Chen Z, Yan Y, Chen Z. Selectively superior production of docosahexaenoic acid in Schizochytrium sp. through engineering the fatty acid biosynthetic pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:75. [PMID: 38831337 PMCID: PMC11145866 DOI: 10.1186/s13068-024-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Schizochytrium sp. is commercially used for production of docosahexaenoic acid (DHA). Schizochytrium sp. utilizes the polyketide synthase complex (PKS) and a single type I fatty acid synthase (FAS) to synthesize polyunsaturated fatty acids and saturated fatty acids, respectively. The acyl carrier protein (ACP) domains of FAS or PKS are used to load acyl groups during fatty acids biosynthesis. Phosphopantetheinyl transferase (PPTase) transfers the pantetheine moiety from Coenzyme A to the conserved serine residue of an inactive ACP domain to produce its active form. RESULTS In this study, in order to improve production and content of DHA, we decreased the expression of fas, strengthened the expression of the PKS pathway, and enhanced the supply of active ACP in Schizochytrium sp. ATCC20888. Weakening the expression of fas or disruption of orfA both led to growth defect and reduction of lipid yields in the resulting strains WFAS and DPKSA, indicating that both FAS and PKS were indispensable for growth and lipid accumulation. Although WFAS had a higher DHA content in total fatty acids than the wild-type strain (WT), its growth defect and low DHA yield hinders its use for DHA production. Overexpression of the orfAB, orfC, orfC-DH (truncated orfC), or ppt promoted DHA and lipid production, respectively. The yields and contents of DHA were further increased by combined overexpression of these genes. Highest values of DHA yield (7.2 g/L) and DHA content (40.6%) were achieved in a recombinant OPKSABC-PPT, ⁓56.5% and 15.3% higher than the WT values, respectively. CONCLUSIONS This study demonstrates that genetic engineering of the fatty acid biosynthetic pathways provides a new strategy to enhance DHA production in Schizochytrium.
Collapse
Affiliation(s)
- Yana Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zongcheng Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yihan Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Wang Q, Jin W, Zhou X, Chen C, Han W, Mahlia TMI, Li X, Jiang G, Liu H, Wang Q. Enhancing docosahexaenoic acid production in Aurantiochytrium species using atmospheric and room temperature plasma mutagenesis and comprehensive multi-omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169217. [PMID: 38081429 DOI: 10.1016/j.scitotenv.2023.169217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Aurantiochytrium sp. belongs to marine heterotrophic single-cell protist, which is an important decomposer in marine ecosystem. Aurantiochytrium sp. has gained notoriety because of its ability to accumulate high-value docosahexaenoic acid (DHA), but the key factors of DHA synthesis were unclear at present. In this study, Atmospheric and Room Temperature Plasma technology was applied to the mutagenic breeding of Aurantiochytrium sp., and transcriptomics and proteomics were adopted to analyze the DHA-biosynthesis mechanism. According to the growth and DHA accumulation profiles, the mutant strain Aurantiochytrium sp. R2A35 was selected. The DHA content in total lipids was greatly improved from 49.39 % of the wild strain R2 to 63.69 % of the mutant strain. Moreover, the DHA content in the biomass of Aurantiochytrium sp. R2A35 as 39.72 % was the highest DHA productivity reported so far. The differentially expressed genes distinguished from transcriptome and the TMT-identified differential proteins distinguished from proteome confirmed that the expression of acetyl-CoA carboxylase and ketoacyl reductase was up-regulated by 4.78-fold and 6.95-fold, respectively and the fatty acid synthase was concurrently down-regulated by 2.79-fold, so that more precursor was transported to the polyketide synthase pathway, thereby increasing the DHA yield in Aurantiochytrium sp. R2A35. This research would provide reference for the DHA metabolism process and contribute to the understanding of the decomposer - Aurantiochytrium sp. in marine ecosystems.
Collapse
Affiliation(s)
- Qing Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China.
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China.
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wei Han
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - T M Indra Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522 Wollongong, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Liu H, Gao W, Cui T, Wang S, Song X, Wang Z, Zhang H, Li S, Yu YL, Cui Q. A high-throughput platform enables in situ screening of fatty acid-producing strains using laser ablation electrospray ionization mass spectrometry and a Python package. Talanta 2024; 268:125234. [PMID: 37839326 DOI: 10.1016/j.talanta.2023.125234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Microbial fatty acid-producing strains are commonly engineered to improve their performance for industrial applications. However, it is challenging to efficiently and rapidly screen target strains for engineering. This study reported an in situ analytical platform using laser ablation electrospray ionization mass spectrometry (LAESI-MS) for fast profiling of triacylglycerols in cellular lipid droplets of Aurantiochytrium sp. colonies cultured on agar plates. LAESI-MS approach allowed for the direct acquisition of a colony cell's characteristic fingerprint mass spectrum and MS/MS facilitated the identification of triacylglycerol species containing three fatty acyl groups. The fatty acid contents of colony cells were calculated based on the intensities of triacylglycerols from their characteristic fingerprint mass spectrum. A Python package called TAFA-LEMS (Triacylglycerol to Fatty Acid by LAESI-MS) was also developed to process the high-throughput MS data and extract fatty acid contents in colony cells. The results demonstrated that the LAESI-MS platform is fast, stable, and reproducible, with a data acquisition rate of ≤2 s per sampling point and ≤13.69% RSDs of the relative contents of fatty acids. In addition, LAESI-MS was successfully performed on the analysis of P. tricornutum and Y lipolytica strains. This in situ MS platform has the potential to become a common biotechnology platform for microbial strain engineering.
Collapse
Affiliation(s)
- Huan Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
| | - Wei Gao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Tianlun Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Huidan Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Shiming Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, Shandong, 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
| |
Collapse
|
4
|
Zhang H, Wang Z, Sun C, Zhang C, Liu H, Cui Q, Song X, Wang S. A phospholipid:diacylglycerol acyltransferase is involved in the regulation of phospholipids homeostasis in oleaginous Aurantiochytrium sp. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:142. [PMID: 37752571 PMCID: PMC10523756 DOI: 10.1186/s13068-023-02396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Thraustochytrids have gained attention as a potential source for the production of docosahexaenoic acid (DHA), where DHA is predominantly stored in the form of triacylglycerol (TAG). The TAG biosynthesis pathways, including the acyl-CoA-dependent Kennedy pathway and the acyl-CoA-independent pathway, have been predicted in thraustochytrids, while the specific details regarding their roles are currently uncertain. RESULTS Phospholipid:diacylglycerol acyltransferase (PDAT) plays a key role in the acyl-CoA-independent pathway by transferring acyl-group from phospholipids (PL) to diacylglycerol (DAG) to from TAG. In thraustochytrid Aurantiochytrium sp. SD116, an active AuPDAT was confirmed by heterologous expression in a TAG-deficient yeast strain H1246. Analysis of AuPDAT function in vivo revealed that deletion of AuPDAT led to slow growth and a significant decrease in cell number, but improved PL content in the single cell during the cell growth and lipid accumulation phases. Interestingly, deletion of AuPDAT did not affect total lipid and TAG content, but both were significantly increased within a single cell. Moreover, overexpression of AuPDAT also resulted in a decrease in cell number, while the total lipid and cell diameter of a single cell were markedly increased. Altogether, both up-regulation and down-regulation of AuPDAT expression affected the cell number, which further associated with the total lipid and TAG content in a single cell. CONCLUSIONS Our study demonstrates that AuPDAT-mediated pathway play a minor role in TAG synthesis, and that the function of AuPDAT may be involved in regulating PL homeostasis by converting PL to TAG in a controlled manner. These findings expand our understanding of lipid biosynthesis in Aurantiochytrium sp. and open new avenues for developing "customized cell factory" for lipid production.
Collapse
Affiliation(s)
- Huidan Zhang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Caili Sun
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Chuchu Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huan Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, Qinghai, China.
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, 266101, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China.
| | - Sen Wang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China.
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, 266101, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China.
| |
Collapse
|
5
|
Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr 2023; 64:10564-10582. [PMID: 37357914 DOI: 10.1080/10408398.2023.2226720] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Omega-3 fatty acids have gained attention due to numerous health benefits. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) are long chain omega-3 fatty acids produced from precursor ALA (α-linolenic acid) in humans but their rate of biosynthesis is low, therefore, these must be present in diet or should be taken as supplements. The commercial sources of omega-3 fatty acids are limited to vegetable oils and marine sources. The rising concern about vegan source, fish aquaculture conservation and heavy metal contamination in fish has led to the search for their alternative source. Microalgae have gained importance due to the production of high-value EPA and DHA and can thus serve as a sustainable and promising source of long chain omega-3 fatty acids. Although the bottleneck lies in the optimization for enhanced production that involves strategies viz. strain selection, optimization of cultivation conditions, media, metabolic and genetic engineering approaches; while co-cultivation, use of nanoparticles and strategic blending have emerged as innovative approaches that have made microalgae as potential candidates for EPA and DHA production. This review highlights the possible strategies for the enhancement of EPA and DHA production in microalgae. This will pave the way for their large-scale production for human health benefits.
Collapse
Affiliation(s)
- Arti Kumari
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Pabbi
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Jiao K, Yang H, Huang X, Liu F, Li S. Effects of phosphorus species and zinc stress on growth and physiology of the marine diatom Thalassiosira weissflogii. CHEMOSPHERE 2023:139308. [PMID: 37364640 DOI: 10.1016/j.chemosphere.2023.139308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Human activities, including industrial and agricultural production, as well as domestic sewage discharge, have led to heavy metal pollution and eutrophication in coastal waters. This has caused a deficiency of dissolved inorganic phosphorus (DIP), but an excess dissolved organic phosphorus (DOP) and high concentrations of zinc. However, the impact of high zinc stress and different phosphorus species on primary producers remains unclear. This study examined the impact of different phosphorus species (DIP and DOP) and high zinc stress (1.74 mg L-1) on the growth and physiology of the marine diatom Thalassiosira weissflogii. The results showed that compared to the low zinc treatment (5 μg L-1), high zinc stress significantly decreased the net growth of T. weissflogii, but the decline was weaker in the DOP group than in the DIP group. Based on changes in photosynthetic parameters and nutrient concentrations, the study suggests that the growth inhibition of T. weissflogii under high zinc stress was likely due to an increase in cell death caused by zinc toxicity, rather than a decrease in cell growth caused by photosynthesis damage. Nonetheless, T. weissflogii was able to reduce zinc toxicity by antioxidant reactions through enhancing activities of superoxide dismutase and catalase and by cationic complexation through enhancing extracellular polymeric substances, particularly when DOP served as the phosphorus source. Furthermore, DOP had a unique detoxification mechanism by producing marine humic acid, which is conducive to complexing metal cations. These results provide valuable insights into the response of phytoplankton to environmental changes in coastal oceans, particularly the effects of high zinc stress and different phosphorus species on primary producers.
Collapse
Affiliation(s)
- Kailin Jiao
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China
| | - Hang Yang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China.
| | - Fengjiao Liu
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Shunxing Li
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| |
Collapse
|
7
|
Ma W, Li J, Yang WQ, Zhang ZY, Yan CX, Huang PW, Sun XM. Efficient Biosynthesis of Odd-Chain Fatty Acids via Regulating the Supply and Consumption of Propionyl-CoA in Schizochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37326390 DOI: 10.1021/acs.jafc.3c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odd chain fatty acids (OCFAs) are high-value-added compounds with great application in the field of food and medicine. As an oleaginous microorganism, Schizochytrium sp. has the potential to produce OCFAs efficiently. Propionyl-CoA is used as a precursor to synthesize OCFAs through the fatty acid synthetase (FAS) pathway, so its flow direction determines the yield of OCFAs. Here, different substrates were assessed to promote propionyl-CoA supply for OCFA accumulation. Moreover, the methylmalonyl-CoA mutase (MCM) was identified as the key gene responsible for propionyl-CoA consumption, which promotes the propionyl-CoA to enter into the tricarboxylic acid cycle rather than the FAS pathway. As one of the classic B12-dependent enzymes, the activity of MCM can be inhibited in the absence of B12. As expected, the OCFA accumulation was greatly increased. However, the removal of B12 caused growth limitation. Furthermore, the MCM was knocked out to block the consumption of propionyl-CoA and to maintain cell growth; results showed that the engineered strain achieved the OCFAs titer of 2.82 g/L, which is 5.76-fold that of wild type. Last, a fed-batch co-feeding strategy was developed, resulting in the highest reported OCFAs titer of 6.82 g/L. This study provides guidance for the microbial production of OCFAs.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Zi-Yi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Yin FW, Zhan CT, Huang J, Sun XL, Yin LF, Zheng WL, Luo X, Zhang YY, Fu YQ. Efficient Co-production of Docosahexaenoic Acid Oil and Carotenoids in Aurantiochytrium sp. Using a Light Intensity Gradient Strategy. Appl Biochem Biotechnol 2023; 195:623-638. [PMID: 36114924 DOI: 10.1007/s12010-022-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Aurantiochytrium is a promising source of docosahexaenoic acid (DHA) and carotenoids, but their synthesis is influenced by environmental stress factors. In this study, the effect of different light intensities on the fermentation of DHA oil and carotenoids using Aurantiochytrium sp. TZ209 was investigated. The results showed that dark culture and low light intensity conditions did not affect the normal growth of cells, but were not conducive to the accumulation of carotenoids. High light intensity promoted the synthesis of DHA and carotenoids, but caused cell damage, resulting in a decrease of oil yield. To solve this issue, a light intensity gradient strategy was developed, which markedly improved the DHA and carotenoid content without reducing the oil yield. This strategy produced 30.16 g/L of microalgal oil with 15.11 g/L DHA, 221 µg/g astaxanthin, and 386 µg/g β-carotene. This work demonstrates that strain TZ209 is a promising DHA producer and provides an efficient strategy for the co-production of DHA oil together with carotenoids.
Collapse
Affiliation(s)
- Feng-Wei Yin
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Ci-Tong Zhan
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Jiao Huang
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Xiao-Long Sun
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Long-Fei Yin
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Wei-Long Zheng
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Xi Luo
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Ying-Ying Zhang
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China
| | - Yong-Qian Fu
- College of Life Science, Taizhou University, No. 1139 Shifu Road, Taizhou, 318000, People's Republic of China.
| |
Collapse
|
9
|
Liu PY, Li G, Lin CB, Wu JJ, Jiang S, Huang FH, Wan X. Modulating DHA-Producing Schizochytrium sp. toward Astaxanthin Biosynthesis via a Seamless Genome Editing System. ACS Synth Biol 2022; 11:4171-4183. [PMID: 36454215 DOI: 10.1021/acssynbio.2c00490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Schizochytrium sp. is commercially used for the production of docosahexaenoic acid (DHA). Some strains of Schizochytrium sp. are also known to produce low amounts of carotenoids, including astaxanthin and β-carotene. In order to enhance the production of astaxanthin in Schizochytrium sp., we established a seamless genome editing system with a dual selection marker for rapid screening of positive transformants. By using this system, we strengthened the endogenous mevalonate pathway, enhanced the supply of geranylgeranyl diphosphate and β-carotene, upregulated endogenous β-carotene hydroxylase, and introduced the algal astaxanthin pathway. The highest astaxanthin production in the engineered Schizochytrium sp. was achieved at 8.1 mg/L (307.1 μg/g dry cell weight) under shake-flask conditions, which was 2.6-fold higher than that in the start strain. Meanwhile, the percentage of DHA to total fatty acids was not obviously affected. We then eliminated the dual selection marker by using the Cre-loxP recombination system, and the engineered strain was ready for iterative editing. The developed system could be applied to seamlessly engineer DHA-producing Schizochytrium sp. toward astaxanthin and other value-added terpenoids, which broadens the application of this strain.
Collapse
Affiliation(s)
- Peng-Yang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Gang Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chu-Bin Lin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun-Jie Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shan Jiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng-Hong Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.,Key Laboratory of Oilseeds processing, Ministry of Agriculture, Wuhan 430062, China
| | - Xia Wan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.,Key Laboratory of Oilseeds processing, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
10
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
11
|
Wang S, Wan W, Wang Z, Zhang H, Liu H, Arunakumara KKIU, Cui Q, Song X. A Two-Stage Adaptive Laboratory Evolution Strategy to Enhance Docosahexaenoic Acid Synthesis in Oleaginous Thraustochytrid. Front Nutr 2021; 8:795491. [PMID: 35036411 PMCID: PMC8759201 DOI: 10.3389/fnut.2021.795491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrid is a promising algal oil resource with the potential to meet the demand for docosahexaenoic acid (DHA). However, oils with high DHA content produced by genetic modified thraustochytrids are not accepted by the food and pharmaceutical industries in many countries. Therefore, in order to obtain non-transgenic strains with high DHA content, a two-stage adaptive laboratory evolution (ALE) strategy was applied to the thraustochytrid Aurantiochytrium sp. Heavy-ion irradiation technique was first used before the ALE to increase the genetic diversity of strains, and then two-step ALE: low temperature based ALE and ACCase inhibitor quizalofop-p-ethyl based ALE were employed in enhancing the DHA production. Using this strategy, the end-point strain E-81 with a DHA content 51% higher than that of the parental strain was obtained. The performance of E-81 strain was further analyzed by component analysis and quantitative real-time PCR. The results showed that the enhanced in lipid content was due to the up-regulated expression of key enzymes in lipid accumulation, while the increase in DHA content was due to the increased transcriptional levels of polyunsaturated fatty acid synthase. This study demonstrated a non-genetic approach to enhance lipid and DHA content in non-model industrial oleaginous strains.
Collapse
Affiliation(s)
- Sen Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Weijian Wan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Zhuojun Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huidan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - K. K. I. U. Arunakumara
- Department of Crop Science, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Qiu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojin Song
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|