1
|
Li Y, Yang D, Wang S, Xu H, Li P. Fabrication and Optimization of Pickering Emulsion Stabilized by Lignin Nanoparticles for Curcumin Encapsulation. ACS OMEGA 2024; 9:21994-22002. [PMID: 38799355 PMCID: PMC11112700 DOI: 10.1021/acsomega.3c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
To develop reversible pH-responsive emulsifiers of natural origin, alkali lignin (AL) was used to develop oil-in-water Pickering emulsions. AL was first modified to synthesize quaternized alkali lignin (QAL), which displayed pH-responsive properties and demonstrated solubility in both acidic and alkaline solutions. In contrast, QAL exhibited insolubility and formed particles in neutral solutions, thereby making it a suitable candidate for utilization as an emulsifier in doubly pH-responsive Pickering emulsions. At pH 5-9, the emulsions were stable. Above or below this pH range, the system demulsifies, resulting in a reversible Pickering emulsifier with two pH-controlled transitions. On the basis of this pH-dependent behavior, lignin-based Pickering emulsions (LPE) could be subjected to several cycles of emulsification-demulsification by alternating the pH of the aqueous phase between basic and acidic, while the droplet size and storage stability were maintained. Curcumin was used as a drug model to study the loading/release behavior of LPE, finding that 50.08% of curcumin could be encapsulated in LPE. The in vitro release of curcumin was pH-dependent. In addition, LPE exhibited an outstanding protective effect against the ultraviolet-induced degradation of curcumin.
Collapse
Affiliation(s)
- Yuanyuan Li
- College
of Pharmacy, Henan University of Chinese
Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Dongjie Yang
- School
of Chemistry and Chemical Engineering, South
China University of Technology, 381 Wushan Road, Tianhe District , Guangzhou 510640, China
| | - Sijia Wang
- College
of Pharmacy, Henan University of Chinese
Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Huifang Xu
- College
of Pharmacy, Henan University of Chinese
Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - PengWei Li
- College
of Pharmacy, Henan University of Chinese
Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| |
Collapse
|
2
|
Li S, Jiang W, Wang H, Ma J, Zhou J, Liu Y. Integrated preparation of functional lignin nanoparticles and levulinic acid directly from the pre-hydrolysis liquor of poplar wood. Int J Biol Macromol 2024; 265:130906. [PMID: 38493611 DOI: 10.1016/j.ijbiomac.2024.130906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The pre-hydrolysis liquor (PHL) produced during pulp dissolution and biomass refining is mainly composed of hemicellulose and lignin, and it is a potential source for production of value-added materials and platform chemicals; however, their utilization has been a serious challenge. In this study, we proposed a green and simple strategy to simultaneously prepare size-controlled functional lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL as the raw material. The as-prepared LNPs exhibited remarkable stability thanks to the presence of saccharides with abundant oxygen-containing groups and surface charges, which prevented aggregation and maintained long-term storage stability. Trace amounts of the LNPs (≤ 0.2 wt%) could stabilize various Pickering emulsions, even with oil-to-water ratios as high as 5:5 (v/v). Subsequently, the remaining PHL was directly used to produce LA without adding a catalyst; under optimal conditions (160 °C and 1 h), the yield of LA was 56.3 % based on the dry saccharide content in the raw PHL. More importantly, p-toluenesulfonic acid (p-TsOH), the only reactive reagent used during the entire preparation process, including the two preparation steps of the LNPs and LA, was reusable, and the recovery rate was >70 % after five cycles. Overall, this green and simple strategy effectively and comprehensively utilized the PHL and showed potential for producing biobased nanomaterials and platform chemicals.
Collapse
Affiliation(s)
- Shunli Li
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, PR China
| | - Weikun Jiang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, PR China.
| | - Huimei Wang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, PR China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Yu Liu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, PR China
| |
Collapse
|
3
|
Zhang J, Zhou Y, Jiang Z, He C, Wang B, Wang Q, Wang Z, Wu T, Chen X, Deng Z, Li C, Jian Z. Bioinspired polydopamine nanoparticles as efficient antioxidative and anti-inflammatory enhancers against UV-induced skin damage. J Nanobiotechnology 2023; 21:354. [PMID: 37775761 PMCID: PMC10543320 DOI: 10.1186/s12951-023-02107-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Excessive and prolonged ultraviolet radiation (UVR) exposure causes photodamage, photoaging, and photocarcinogenesis in human skin. Therefore, safe and effective sun protection is one of the most fundamental requirements. Living organisms tend to evolve various natural photoprotective mechanisms to avoid photodamage. Among them, melanin is the main functional component of the photoprotective system of human skin. Polydopamine (PDA) is synthesized as a mimic of natural melanin, however, its photoprotective efficiency and mechanism in protecting against skin damage and photoaging remain unclear. In this study, the novel sunscreen products based on melanin-inspired PDA nanoparticles (NPs) are rationally designed and prepared. We validate that PDA NPs sunscreen exhibits superior effects on photoprotection, which is achieved by the obstruction of epidermal hyperplasia, protection of the skin barrier, and resolution of inflammation. In addition, we find that PDA NPs are efficiently intake by keratinocytes, exhibiting robust ROS scavenging and DNA protection ability with minimal cytotoxicity. Intriguingly, PDA sunscreen has an influence on maintaining homeostasis of the dermis, displaying an anti-photoaging property. Taken together, the biocompatibility and full photoprotective properties of PDA sunscreen display superior performance to those of commercial sunscreen. This work provides new insights into the development of a melanin-mimicking material for sunscreens.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yuqi Zhou
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhaoting Jiang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chenhui He
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Bo Wang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zeqian Wang
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Tong Wu
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiaoqi Chen
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital Fourth Military Medical University, Xi'an, 710032, P. R. China.
| |
Collapse
|
4
|
Fu X, Zheng Z, Sha Z, Cao H, Yuan Q, Yu H, Li Q. Biorefining waste into nanobiotechnologies can revolutionize sustainable agriculture. Trends Biotechnol 2022; 40:1503-1518. [PMID: 36270903 DOI: 10.1016/j.tibtech.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Modern agriculture has evolved technological innovations to sustain crop productivity. Recent advances in biorefinery technology use crop residue as feedstock, but this raises carbon sequestration concerns as biorefining utilizes carbon that would otherwise be returned to the soil, thus causing a decline in crop productivity. Furthermore, biorefining generates abundant lignin waste that significantly impedes the efficiency of biorefineries. Valorizing lignin into advanced nanobiotechnologies for agriculture provides a unique opportunity to balance bioeconomy and soil carbon sequestration. Integration of agricultural practices such as utilization of agrochemicals, fertilizers, soil modifiers, and mulching with lignin nanobiotechnologies promotes crop productivity and also enables advanced manufacturing of high-value bioproducts from lignin. Lignin nanobiotechnologies thus represent state-of-the-art innovations to transform both the bioeconomy and sustainable agriculture.
Collapse
Affiliation(s)
- Xiao Fu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ze Zheng
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhimin Sha
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongliang Cao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|