1
|
Zhang X, Bekker MZ, Kulcsar AC, Nandorfy DE, Clark AC. Comparison of Techniques for the Quantitation of Reductive Aroma Compounds in White Wine: Links to Sensory Analysis and Cu Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11051-11061. [PMID: 38698723 DOI: 10.1021/acs.jafc.4c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Multiple analytical methodologies allow quantitation of H2S and methanethiol (MeSH) in wine, but confirmation that the determined concentrations are related to perceived off-aromas, or "reductive" faults, is yet to be provided. Fifty white wines underwent sensory evaluation and measurement of free and salt-treated H2S and MeSH concentrations by gas chromatography with sulfur chemiluminescence detection and/or gas detection tubes. The determined concentrations were compared across techniques and different analysis laboratories. Sulfhydryl off-odors in the wines were best described by boiled and rotten egg and natural gas/sewerage/durian aroma attributes. The wines with the highest ratings for both aromas had high concentrations of free H2S, free MeSH, and/or salt-treated MeSH but were unrelated to salt-treated H2S. The free sulfhydryl concentrations and their associated aromas appeared to be suppressed by specific Cu fractions in the wines. This study provides evidence of the relevant measures of reductive aroma compounds and their relation to off-odors and Cu fractions.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia
- The Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Marlize Z Bekker
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland 4067, Australia
| | - Allie C Kulcsar
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| | - Damian Espinase Nandorfy
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| | - Andrew C Clark
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia
- The Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| |
Collapse
|
2
|
Wang J, Ma T, Wei M, Lan T, Bao S, Zhao Q, Fang Y, Sun X. Copper in grape and wine industry: Source, presence, impacts on production and human health, and removal methods. Compr Rev Food Sci Food Saf 2023; 22:1794-1816. [PMID: 36856534 DOI: 10.1111/1541-4337.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Heavy metals are of particular concern in grape and wine processing, especially copper. The sources of copper are diverse, including vineyard soil, copper-containing pesticides on the fruit surface, copper wine-making equipment, and exogenous addition in winemaking. Copper has potential risks to human nerves, metabolism, and others. It can inhibit yeast growth, delay fermentation, and also mediate oxidation reactions, which has a huge impact on the nutritional quality and sensory quality of fresh wine and aged wine. It is therefore crucial to detect, quantify, and remove copper from grapes and wine. However, the copper situations in the wine industries of various countries are complicated and diverse, and the existing forms of copper are quite different, which makes the research challenging. This review summarizes and analyzes the existence and influence of copper in the wine industry by analyzing the sources of, the current situation regarding, and the detection and removal methods for copper in wine. With the study, a better understanding of copper's impact on wine production will be gained, facilitating further control of copper in wine and helping the wine industry grow.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Wei
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Zhang X, Blackman JW, Prenzler PD, Clark AC. Suppression of reductive characters in white wine by Cu fractions: Efficiency and duration of protection during bottle aging. Food Chem 2022; 393:133305. [PMID: 35661605 DOI: 10.1016/j.foodchem.2022.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Cu in wine can suppress sulfidic-odours, but the active forms and duration of protection are uncertain. Additions of 0, 0.3 or 0.6 mg/L Cu(II) were made to Chardonnay and Pinot Grigio at bottling. Throughout a 12- or 14-month storage period, Cu fractions were determined by colorimetry, and sulfhydryl compounds by gas chromatography with sulfur chemiluminescence detection. After Cu(II) addition, the dominant Cu fractions were associated with Cu(II)-organic acids (fraction I) and Cu(I)-thiol complexes (fraction II), and over 8-months their concentrations gradually fell below 0.015 mg/L. During this time, a fraction of Cu, predominantly attributed to sulfide-bound Cu, increased in concentration. Suppression of free hydrogen sulfide was assured when the combined Cu fractions I and II concentrations were above 0.015 mg/L, while free methanethiol suppression required Cu fraction I concentration above 0.035 mg/L. Decay rates for Cu fractions demonstrated that the duration that Cu can actively suppress sulfidic odours is wine-dependent.
Collapse
Affiliation(s)
- Xinyi Zhang
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| | - John W Blackman
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Paul D Prenzler
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Andrew C Clark
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
4
|
Abstract
Reactive compounds with one or more sulfane sulfur atoms can be an important source of reductive off-odors in wine. These substances contain labile sulfur, which can participate in microbiological (enzymatic) and chemical transformations (including in the post-bottling period), releasing malodorous hydrogen sulfide (H2S) and its derivatives (MeSH, EtSH, etc.). The following sulfane sulfur compounds were considered in this review as important precursors in the wine chemistry of reductive aromas: elemental sulfur (S8), persulfides (R-S-S-H), polysulfanes (R-Sn-R(′)), polythionates (−O3S-Sn-SO3−), thiosulfate (S2O32−) and derivatives of (poly)sulfane monosulfonic acids (R-Sn-SO3H). This review discusses the formation of these compounds, their reactivity and chemical transformations in wine, including reactions of nucleophilic substitution. In particular, the reactions of thiolysis, thiosulfatolysis and sulfitolysis of sulfane sulfur compounds are described, which lead in the end to reductive aroma compounds. In this way, the review attempts to shed light on some of the mysteries in the field of sulfur chemistry in wine and the reappearance of reductive off-odors after bottling.
Collapse
|