1
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
2
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
3
|
Xu B, Huang X, Qin H, Lei Y, Zhao S, Liu S, Liu G, Zhao J. Evaluating the Safety of Bacillus cereus GW-01 Obtained from Sheep Rumen Chyme. Microorganisms 2024; 12:1457. [PMID: 39065225 PMCID: PMC11278751 DOI: 10.3390/microorganisms12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus cereus is responsible for 1.4-12% food poisoning outbreaks worldwide. The safety concerns associated with the applications of B. cereus in health and medicine have been controversial due to its dual role as a pathogen for foodborne diseases and a probiotic in humans and animals. In this study, the pathogenicity of B. cereus GW-01 was assessed by comparative genomic, and transcriptome analysis. Phylogenetic analysis based on a single-copy gene showed clustering of the strain GW-01, and 54 B. cereus strains from the NCBI were classified into six major groups (I-VI), which were then associated with the source region and sequence types (STs). Transcriptome results indicated that the expression of most genes related with toxins secretion in GW-01 was downregulated compared to that in the lag phase. Overall, these findings suggest that GW-01 is not directly associated with pathogenic Bacillus cereus and highlight an insightful strategy for assessing the safety of novel B. cereus strains.
Collapse
Affiliation(s)
- Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Haixiong Qin
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ying Lei
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
4
|
Lee YC, Chang YT, Cheng YH, Pranata R, Hsu HH, Chen YL, Chen RJ. Pterostilbene Protects against Osteoarthritis through NLRP3 Inflammasome Inactivation and Improves Gut Microbiota as Evidenced by In Vivo and In Vitro Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38624135 PMCID: PMC11046483 DOI: 10.1021/acs.jafc.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Osteoarthritis (OA) is a persistent inflammatory disease, and long-term clinical treatment often leads to side effects. In this study, we evaluated pterostilbene (PT), a natural anti-inflammatory substance, for its protective effects and safety during prolonged use on OA. Results showed that PT alleviated the loss of chondrocytes and widened the narrow joint space in an octacalcium phosphate (OCP)-induced OA mouse model (n = 3). In vitro experiments demonstrate that PT reduced NLRP3 inflammation activation (relative protein expression: C: 1 ± 0.09, lipopolysaccharide (LPS): 1.14 ± 0.07, PT: 0.91 ± 0.07, LPS + PT: 0.68 ± 0.04) and the release of inflammatory cytokines through NF-κB signaling inactivation (relative protein expression: C: 1 ± 0.03, LPS: 3.49 ± 0.02, PT: 0.66 ± 0.08, LPS + PT: 2.78 ± 0.05), ultimately preventing cartilage catabolism. Interestingly, PT also altered gut microbiota by reducing inflammation-associated flora and increasing the abundance of healthy bacteria in OA groups. Collectively, these results suggest that the PT can be considered as a protective strategy for OA.
Collapse
Affiliation(s)
- Yen-Chien Lee
- Department
of Oncology, Tainan Hospital, Tainan 70043, Taiwan
- Department
of Internal Medicine, National Cheng Kung
University Hospital, College of Medicine, Tainan 70043, Taiwan
- Department
of Nursing, National Tainan Junior College
of Nursing, Tainan 70043, Taiwan
| | - Yu-Ting Chang
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Hsuan Cheng
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rosita Pranata
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Hsuan Hsu
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Lin Chen
- Bioresource
Collection and Research Center (BCRC), Food
Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Rong-Jane Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Purohit S, Girisa S, Ochiai Y, Kunnumakkara AB, Sahoo L, Yanase E, Goud VV. Scirpusin B isolated from Passiflora edulis Var. flavicarpa attenuates carbohydrate digestive enzymes, pathogenic bacteria and oral squamous cell carcinoma. 3 Biotech 2024; 14:28. [PMID: 38173823 PMCID: PMC10758380 DOI: 10.1007/s13205-023-03876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Passiflora edulis Var. flavicarpa (passion fruit) generates vast waste (60-70%) in the form of peel and seed after the juice extraction. The study aimed to isolate Scirpusin B (SB) from passion fruit (PF) seed waste collected from Northeast India and to analyse its anti-radical, antibacterial, anti-diabetic, and anti-oral cancer activities. Scirpusin B was isolated following hydro-alcoholic extraction, fractionation, and column chromatography. The isolated fraction was further identified through NMR and mass spectroscopy. SB exhibited significant antiradical activity against six standard antioxidant compounds, indicating its commercial application. SB inhibited α-amylase (IC50 Value: 76.38 ± 0.25 µg/mL) and α-glucosidase digestive enzymes (IC50 Value: 2.32 ± 0.04 µg/mL), signifying its antidiabetic properties. In addition, SB showed profound antibacterial activity against eight gram-positive and gram-negative bacteria reported for the first time. Furthermore, SB inhibited SAS and TTN oral cancer cell proliferation up to 95% and 83%, respectively. SB significantly inhibited colonies of SAS and TTn cells in the clonogenic assay, attributing to its anticancer properties. The PI-FACS assay confirmed the ability of SB (75 µM) to kill SAS and TTn cells by 40.26 and 44.3% in 72 h. The mechanism of SB inhibiting oral cancer cell proliferation was understood through western blot analysis, where SB significantly suppressed different cancer hallmark proteins, such as TNF-α, survivin, COX-2, cyclin D1, and VEGF-A. The present study suggests that SB isolated from PF seed can add noteworthy value to the waste biomass for various industrial and medical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03876-6.
Collapse
Affiliation(s)
- Sukumar Purohit
- School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, India
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Yuto Ochiai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Lingaraj Sahoo
- School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Vaibhav V. Goud
- School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, India
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
6
|
Hu YM, Wang YR, Zhao WB, Ding YY, Wu ZR, Wang GH, Deng P, Zhang SY, An JX, Zhang ZJ, Luo XF, Liu YQ. Efficacy of pterostilbene suppression on Aspergillus flavus growth, aflatoxin B 1 biosynthesis and potential mechanisms. Int J Food Microbiol 2023; 404:110318. [PMID: 37454507 DOI: 10.1016/j.ijfoodmicro.2023.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/15/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Aspergillus flavus, a widespread saprotrophic filamentous fungus, could colonize agricultural crops with aflatoxin contamination, which endangers food security and the agricultural economy. A safe, effective and environmentally friendly fungicide is urgently needed. Pterostilbene, a natural phytoalexin originated from Pterocarpus indicus Willd., Vaccinium spp. and Vitis vinifera L., has been reported to possess excellent antimicrobial activity. More importantly, it is quite safe and healthy. In our screening tests of plant polyphenols for the inhibition of A. flavus, we found that pterostilbene evidently inhibited mycelial growth of Aspergillus flavus (EC50 = 15.94 μg/mL) and the inhibitory effect was better than that of natamycin (EC50 = 22.01 μg/mL), which is a natural product widely used in food preservation. Therefore, we provided insights into the efficacy of pterostilbene suppression on A. flavus growth, aflatoxin B1 biosynthesis and its potential mechanisms against A. flavus in the present study. Here, pterostilbene at concentrations of 250 and 500 μg/mL could effectively inhibit the infection of A. flavus on peanuts. And the biosynthesis of the secondary metabolite aflatoxin B1 was also inhibited. The antifungal effects of pterostilbene are exerted by inducing a large amount of intracellular reactive oxygen species production to bring the cells into a state of oxidative stress, damaging cellular biomolecules such as DNA, proteins and lipids and destroying the integrity of the cell membrane. Taken together, our study strongly supported the fact that pterostilbene could be considered a safe and effective antifungal agent against A. flavus infection.
Collapse
Affiliation(s)
- Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Gong S, Jiao C, Guo L, Jiang Y. Beetroot ( Beta vulgaris) Extract against Salmonella Typhimurium via Apoptosis-Like Death and Its Potential for Application in Cooked Pork. Int J Mol Sci 2023; 24:14217. [PMID: 37762521 PMCID: PMC10531726 DOI: 10.3390/ijms241814217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Salmonella Typhimurium is a common foodborne pathogen in meat and meat products, causing significant harm and losses to producers and consumers. The aim of this study was to investigate the antibacterial activity and possible mechanisms of beetroot (Beta vulgaris) extract against S. Typhimurium, as well as the application potential in cooked pork. The results suggested beetroot extract could inhibit S. Typhimurium with a minimum inhibitory concentration (MIC) of 20 mg/mL. After treatment with beetroot extract (1 or 2 MIC), S. Typhimurium exhibited the characteristics of apoptotic-like death (ALD), such as membrane depolarization, phosphatidylserine (PS) externalization, caspase-like protein activation, and DNA fragmentation. Further research has shown that the ALD induced by beetroot extract in S. Typhimurium was caused by reactive oxygen species (ROS) consumption, which was different from most natural products. The treatment of cooked pork with beetroot extract could reduce the number of S. Typhimurium, lower pH, defer lipid oxidation, and improve the colour. These results indicate that beetroot extract can inhibit S. Typhimurium through the ALD mechanism and has potential as an antibacterial agent against S. Typhimurium in ready-to-eat meat products.
Collapse
Affiliation(s)
| | | | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.G.); (C.J.)
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.G.); (C.J.)
| |
Collapse
|
8
|
Jiao C, Gong S, Shi M, Guo L, Jiang Y, Man C. Depletion of reactive oxygen species induced by beetroot (Beta vulgaris) extract leads to apoptosis-like death in Cronobacter sakazakii. J Dairy Sci 2023; 106:3827-3837. [PMID: 37105876 DOI: 10.3168/jds.2022-22425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
This research aimed to disclose the antibacterial activity of beetroot extract (Beta vulgaris) against Cronobacter sakazakii and its possible mechanisms. We evaluated its antibacterial activity by measuring the minimum inhibitory concentration (MIC) and time-kill kinetics. We also evaluated the intracellular ATP levels, bacterial apoptosis-like death (ALD), and reactive oxygen species (ROS) levels to reveal the possible antibacterial mechanisms. Our results showed that the MIC of beetroot extract against C. sakazakii was 25 mg/mL and C. sakazakii (approximately 8 log cfu/mL) was completely inhibited after treatment with 2 MIC of beetroot extract for 3 h. Beetroot extract reduced intracellular ATP levels and facilitated characteristics of ALD in C. sakazakii, such as membrane depolarization, increased intracellular Ca2+ levels, phosphatidylserine externalization, caspase-like protein activation, and DNA fragmentation. Additionally, and different from most bacterial ALD caused by the accumulation of ROS, beetroot extract reduced the intracellular ROS levels in C. sakazakii. Our experimental data provide a rationale for further research of bacterial ALD and demonstrate that beetroot extract can inhibit C. sakazakii in food processing environments.
Collapse
Affiliation(s)
- Chaoqin Jiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shaoying Gong
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mingwei Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
9
|
Volpes S, Cruciata I, Ceraulo F, Schimmenti C, Naselli F, Pinna C, Mauro M, Picone P, Dallavalle S, Nuzzo D, Pinto A, Caradonna F. Nutritional epigenomic and DNA-damage modulation effect of natural stilbenoids. Sci Rep 2023; 13:658. [PMID: 36635363 PMCID: PMC9837110 DOI: 10.1038/s41598-022-27260-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
The aim of the present work is the evaluation of biological effects of natural stilbenoids found in Vitis vinifera, with a focus on their activity as epigenetic modulators. In the present study, resveratrol, pterostilbene and for the first time their dimers (±)-trans-δ-viniferin, (±)-trans-pterostilbene dehydrodimer were evaluated in Caco-2 and HepG-2 cell lines as potential epigenetic modulators. Stilbenoids were added in a Caco-2 cell culture as a model of the intestinal epithelial barrier and in the HepG-2 as a model of hepatic environment, to verify their dose-dependent toxicity, ability to interact with DNA, and epigenomic action. Resveratrol, pterostilbene, and (±)-trans-pterostilbene dehydrodimer were found to have no toxic effects at tested concentration and were effective in reversing arsenic damage in Caco-2 cell lines. (±)-trans-δ-viniferin showed epigenomic activity, but further studies are needed to clarify its mode of action.
Collapse
Affiliation(s)
- Sara Volpes
- grid.10776.370000 0004 1762 5517Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Ilenia Cruciata
- grid.10776.370000 0004 1762 5517Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Federica Ceraulo
- grid.10776.370000 0004 1762 5517Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Chiara Schimmenti
- grid.10776.370000 0004 1762 5517Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Flores Naselli
- grid.10776.370000 0004 1762 5517Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Cecilia Pinna
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Maurizio Mauro
- grid.251993.50000000121791997Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Michael F. Price Center 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - Pasquale Picone
- grid.10776.370000 0004 1762 5517Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128 Palermo, Italy ,grid.510483.bIstituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Via Ugo la Malfa, 153, 90146 Palermo, Italy
| | - Sabrina Dallavalle
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Domenico Nuzzo
- grid.10776.370000 0004 1762 5517Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128 Palermo, Italy ,grid.510483.bIstituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Via Ugo la Malfa, 153, 90146 Palermo, Italy
| | - Andrea Pinto
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| | - Fabio Caradonna
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, (STEBICEF - Sezione di Biologia Cellulare), Viale delle Scienze, Edificio 16, 90128, Palermo, Italy. .,Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Via Ugo la Malfa, 153, 90146, Palermo, Italy.
| |
Collapse
|
10
|
New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects. Molecules 2022; 27:molecules27196316. [PMID: 36234852 PMCID: PMC9571692 DOI: 10.3390/molecules27196316] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Pterostilbene (PTS), a compound most abundantly found in blueberries, is a natural analog of resveratrol. Several plant species, such as peanuts and grapes, produce PTS. While resveratrol has been extensively studied for its antioxidant properties, recent evidence also points out the diverse therapeutic potential of PTS. Several studies have identified the robust pharmacodynamic features of PTS, including better intestinal absorption and elevated hepatic stability than resveratrol. Indeed, due to its higher bioavailability paired with reduced toxicity compared to other stilbenes, PTS has become an attractive drug candidate for the treatment of several disease conditions, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. This review article provides an extensive summary of the nutraceutical potential of PTS in various disease conditions while discussing the crucial mechanistic pathways implicated. In particular, we share insights from our studies about the Nrf2-mediated effect of PTS in diabetes and associated complications. Moreover, we elucidate the important sources of PTS and discuss in detail its pharmacokinetics and the range of formulations and routes of administration used across experimental studies and human clinical trials. Furthermore, this review also summarizes the strategies successfully used to improve dietary availability and the bio-accessibility of PTS.
Collapse
|
11
|
Antibacterial mechanism of beetroot (Beta vulgaris) extract against Listeria monocytogenes through apoptosis-like death and its application in cooked pork. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|