1
|
Zhang M, Liu J, Gao Y, Zhao B, Xu ML, Zhang T. Se site targeted-two circles antioxidant in GPx4-like catalytic peroxide degradation by polyphenols (-)-epigallocatechin gallate and genistein using SERS. Food Chem X 2024; 22:101387. [PMID: 38665629 PMCID: PMC11043887 DOI: 10.1016/j.fochx.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A Se site targeted-two circles antioxidant of polyphenols EGCG and genistein in glutathione peroxidase 4 (GPx4)-like catalytic peroxide H2O2 and cumene hydroperoxide degradation was demonstrated by surface-enhanced Raman scattering (SERS). Se atom's active center is presenting a 'low-oxidation' and a 'high-oxidation' catalytic cycle. The former is oxidized to selenenic acid (SeO-) with a Raman bond at 619/ 610 cm-1 assigned to the νO - Se by the hydroperoxide substrate at 544/ 551 cm-1 assigned to ωHSeC decreased. Under oxidative stress, the enzyme shifted to 'high-oxidation' catalytic cycle, in which GPx4 shuttles between R-SeO- and R-SeOO- with a Raman intensity of bond at 840/ 860 cm-1 assigned to νO[bond, double bond]Se. EGCG could act as a reducing agent both in H2O2 and Cu-OOH degradation, while, genistein can only reduce Cu-OOH, because it binds more readily to the selenium site in GPx4 than EGCG with a closer proximity, therefore may affect its simultaneous binding to coenzymes.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Meng-Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| |
Collapse
|
2
|
Zhang T, Li N, Wang R, Sun Y, He X, Lu X, Chu L, Sun K. Enhanced therapeutic efficacy of doxorubicin against multidrug-resistant breast cancer with reduced cardiotoxicity. Drug Deliv 2023; 30:2189118. [PMID: 36919676 PMCID: PMC10026743 DOI: 10.1080/10717544.2023.2189118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX), a commonly used anti-cancer drug, is limited by its cardiotoxicity and multidrug resistance (MDR) of tumor cells. Epigallocatechin gallate (EGCG), a natural antioxidant component, can effectively reduce the cardiotoxicity of DOX. Meanwhile, EGCG can inhibit the expression of P-glycoprotein (P-gp) and reverse the MDR of tumor cells. In this study, DOX is connected with low molecular weight polyethyleneimine (PEI) via hydrazone bond to get the pH-sensitive PEI-DOX, which is then combined with EGCG to prevent the cardiotoxicity of DOX and reverse the MDR of cancer cells. In addition, folic acid (FA) modified polyethylene glycol (PEG) (PEG-FA) is added to get the targeted system PEI-DOX/EGCG/FA. The MDR reversal and targeting ability of PEI-DOX/EGCG/FA is performed by cytotoxicity and in vivo anti-tumor activity on multidrug resistant MCF-7 cells (MCF-7/ADR). Additionally, we investigate the anti-drug resistant mechanism by Western Blot. The ability of EGCG to reduce DOX cardiotoxicity is confirmed by cardiotoxicity assay. In conclusion, PEI-DOX/EGCG/FA can inhibit the expression of P-gp and reverse the MDR in tumor cells. It also shows the ability of remove oxygen free radicals effectively to prevent the cardiotoxicity of DOX.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Xiaoyan He
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
3
|
Unno T, Ichitani M. Epigallocatechin-3-Gallate Decreases Plasma and Urinary Levels of p-Cresol by Modulating Gut Microbiota in Mice. ACS OMEGA 2022; 7:40034-40041. [PMID: 36385823 PMCID: PMC9648152 DOI: 10.1021/acsomega.2c04731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
p-Cresol (PC), a gut bacterial product of tyrosine catabolism, is recognized as a uremic toxin that has negative biological effects. Lowering the plasma PC level by manipulating the gut bacterial composition represents a promising therapeutic strategy in chronic kidney disease. This study was conducted to reveal whether epigallocatechin-3-gallate (EGCG) decreases plasma PC levels by limiting its bacterial production in a mouse model. The PC concentration in the samples was measured by high-performance liquid chromatography (HPLC) after treatments with sulfatase and β-glucuronidase. The results showed that the addition of EGCG to the diet decreased the plasma and urinary concentrations of PC in a dose-dependent manner, with a statistically significant difference between the control group and the 0.2% EGCG group. However, once EGCG was enzymatically hydrolyzed to epigallocatechin (EGC) and gallic acid, such effects were lost almost completely. The addition of 0.2% EGCG in the diet was accompanied by a decreased abundance of Firmicutes at the phylum level and Clostridiales at the order level, which constitute a large part of PC produced from tyrosine. In conclusion, EGCG, not EGC, reduced plasma and urinary concentrations of PC in mice by suppressing its bacterial production with accompanying alteration of the relative abundance of PC producers.
Collapse
Affiliation(s)
- Tomonori Unno
- Faculty
of Human Nutrition, Tokyo Kasei Gakuin University, 22 Sanban-cho,
Chiyoda-ku, Tokyo 102-8341, Japan
| | - Masaki Ichitani
- Central
Research Institute, Ito En, Ltd., 21 Mekami, Makihohara-shi, Shizuoka 421-0516, Japan
| |
Collapse
|