1
|
Lu Q, Qiu C, Zhu J, Liu J, Wang X, Guo X. Elucidation of key fatty aroma compound contributing to the hepatopancreas of Eriocheir sinensis using sensomics approach by GC-IMS and GC-MS-O. Food Chem 2024; 455:139904. [PMID: 38901221 DOI: 10.1016/j.foodchem.2024.139904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Aroma is one of the most noticeable characteristics when consuming Chinese mitten crab (Eriocheir sinensis) and is crucial for consumer satisfaction and the development of industry. In this study, we utilized fingerprints and the sensomics approach to analyze volatiles in the hepatopancreas of E. sinensis from Chongming and Taixing. GC-IMS indicated that the odor profile was dominated by pungent (-), buttery (+), and fruity (+) from Chongming and was more prone to alcoholic (-), solvent (-), and aldehydic (+) in Taixing. Moreover, PLS-DA modeling identified 2-acetylthiazole and toluene as the primary differential compounds. Subsequently, fifteen active-aroma compounds with FD values of >4 was recombined in an odorless matrix to simulate the odor profile of the hepatopancreas. Notably, removing methional may significantly decrease the intensity of the fatty and toasted odors. The findings reveal the odor profile of hepatopancreas and establish a theoretical foundation for subsequent studies on flavor.
Collapse
Affiliation(s)
- Qi Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Caohua Qiu
- Gerstel (Shanghai) Co. Ltd., Shanghai 201306, China
| | - Jianshe Zhu
- Gerstel (Shanghai) Co. Ltd., Shanghai 201306, China
| | - Jieyu Liu
- Gerstel (Shanghai) Co. Ltd., Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| | - Xueqian Guo
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Deng B, Li Y, Yang Y, Xie W. Advantages of UHT in retaining coconut milk aroma and insights into thermal changes of aroma compounds. Food Res Int 2024; 194:114937. [PMID: 39232549 DOI: 10.1016/j.foodres.2024.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Coconut milk products are susceptible to bacterial damage, necessitating sterilization methods that often compromise nutrient and aroma integrity. This study investigates the effects of different thermal sterilisation methods on coconut milk aroma using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We assessed the impact of pasteurisation (PAS, 70 °C, 25 min), high-temperature sterilisation (HTS, 121.1 °C, 15 min), and ultra-high temperature sterilisation (UHT, 130 °C, 5 s) through clustered heat maps and correlation analyses. Significant differences were observed (p < 0.05), with 37 and 52 substances detected by HS-GC-IMS and HS-SPME-GC-MS, respectively, identifying 12 key aroma compounds. UHT treatment primarily reduced 8 acids, maintaining a compositional structure and sensory profile similar to raw coconut milk. PAS and HTS treatments decreased the sensory intensity of overall coconut milk aroma, creamy, and floral notes, correlating with the presence of 2-heptanol, nonanal, 4-methylvaleric acid, and 2-tridecanone. These methods increased cooked notes, associated with 5-methyl-3-heptanone, 3-butyn-1-ol, hydroxyacetone, and acetoin. Rancidity was linked to acids such as isobutyric acid, isovaleric acid, and heptanoic acid, with high temperatures effectively reducing these compounds. Prolonged temperature changes in PAS and HTS accelerated lipid oxidative degradation and the Maillard reaction, involving free fatty acids in the formation of alcohols, aldehydes, esters, and lactones. These findings provide a theoretical basis for studying coconut milk flavour deterioration.
Collapse
Affiliation(s)
- Baohua Deng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Jiangsu Susa Food Co., LTD., Taizhou 225324, China
| | - Yang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Ye Yang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China.
| |
Collapse
|
3
|
Czippelová B, Nováková S, Šarlinová M, Baranovičová E, Urbanová A, Turianiková Z, Krohová JČ, Halašová E, Škovierová H. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). J Breath Res 2024; 18:036004. [PMID: 38701772 DOI: 10.1088/1752-7163/ad4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec®device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.
Collapse
Affiliation(s)
- Barbora Czippelová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Slavomíra Nováková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Miroslava Šarlinová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Eva Baranovičová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | | | - Zuzana Turianiková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Jana Čerňanová Krohová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Erika Halašová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Henrieta Škovierová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| |
Collapse
|
4
|
Augustini ALRM, Borg C, Sielemann S, Telgheder U. Making Every Single Puff Count-Simple and Sensitive E-Cigarette Aerosol Sampling for GCxIMS and GC-MS Analysis. Molecules 2023; 28:6574. [PMID: 37764350 PMCID: PMC10536117 DOI: 10.3390/molecules28186574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The analysis of the aerosol from tobaccoless electronic cigarettes (e-cigarettes) is an important part of understanding their impact on human health, yet sampling aerosol from e-cigarettes is still considered a challenge. It lacks a standard method for research and quality control and there are a variety of methods. However, few are simple and inexpensive, and none have been suggested for the use with gas chromatography coupled ion mobility spectrometry (GCxIMS). This work presents and evaluates such a setup made from standard lab equipment to quickly collect a quantitative sample from the aerosol of a single puff (5 s totaling 125 mL). The aerosol condensates directly in the cooled headspace (HS) vial, which is analyzed in the HS-GCxIMS or mass spectrometer (HS-GC-MS). The combined use of GC-MS and GCxIMS allows the simple and sensitive identification of unknown substances in complex mixtures and the identification of degradation products in the aerosols. A calibration of 26 flavor compounds (0.2-20 µg/g) was created using single puffs of a spiked, flavorless commercial refill solution and 2-alkanones as internal standards. This sensitive but easily reproducible setup enables a wide range of further investigations, even for labs that were previously unable to afford it.
Collapse
Affiliation(s)
- Alexander L. R. M. Augustini
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Marker Allee 76-78, 59063 Hamm, Germany; (A.L.R.M.A.)
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Christopher Borg
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Marker Allee 76-78, 59063 Hamm, Germany; (A.L.R.M.A.)
| | - Stefanie Sielemann
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Marker Allee 76-78, 59063 Hamm, Germany; (A.L.R.M.A.)
| | - Ursula Telgheder
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
5
|
Naylor CN, Clowers BH, Schlottmann F, Solle N, Zimmermann S. Implementation of an Open-Source Multiplexing Ion Gate Control for High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37276587 DOI: 10.1021/jasms.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With ion mobility spectrometry increasingly used in mass spectrometry to enhance separation by increasing orthogonality, low ion throughput is a challenge for the drift-tube ion mobility experiment. The High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) is no exception and routinely uses duty cycles of less than 0.1%. Multiplexing techniques such as Fourier transform and Hadamard transform represent two of the most common approaches used in the literature to improve ion throughput for the IMS experiment; these techniques promise increased duty cycles of up to 50% and an increased signal-to-noise ratio (SNR). With no instrument modifications required, we present the implementation of Hadamard Transform on the HiKE-IMS using a low cost, high-speed (600 MHz), open source microcontroller, a Teensy 4.1. Compared to signal average mode, 7- to 10-bit pseudorandom binary sequences resulted in increased analyte signal by over a factor of 3. However, the maximum SNR gain of 10 did not approach the theoretical 2n-1 gain largely due to capacitive coupling of the ion gate modulation with the Faraday plate used as a detector. Even when utilizing an inverse Hadamard technique, capacitive coupling was not completely eliminated. Regardless, the benefits of multiplexing IMS coupled to mass spectrometers are well documented throughout literature, and this first effort serves as a proof of concept for multiplexing HiKE-IMS. Finally, the highly flexible Teensy used in this effort can be used to multiplex other devices or can be used for Fourier transform instead of Hadamard transform.
Collapse
Affiliation(s)
- Cameron N Naylor
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Florian Schlottmann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Nic Solle
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| |
Collapse
|
6
|
Mazzucotelli M, Khomenko I, Betta E, Cetto I, Farneti B, Gabetti E, Cavallero A, Aprea E, Biasioli F. Monitoring alkyl pyrazines in roasted hazelnuts by SHS-GC-IMS: IMS response assessment and standardization. Talanta 2023; 259:124568. [PMID: 37088040 DOI: 10.1016/j.talanta.2023.124568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Gas chromatography coupled with ion mobility spectrometry (IMS) is an analytical tool which is rapidly becoming widespread in the analysis of food volatiles. Despite this increasing popularity, an assessment of the IMS response for several flavor compound classes is not yet available. This study focuses on alkyl pyrazines and their determination in roasted hazelnut pastes. These Maillard reaction products are crucial to determine the aromatic profile of roasted foods and are suitable markers for industrial roasting monitoring. The instrumental response of 8 alkyl pyrazines was studied using a model matrix and a matrix matching approach. The results showed a relevant effect of the pyrazine ring substitution pattern on the concentration-response curve trends, highlighting that an external standardization of the IMS response is required to make possible relative abundance comparisons between analytes. A response standardization was therefore developed and applied to determine alkyl pyrazines in samples with different roasting intensity and geographical and botanical origin.
Collapse
Affiliation(s)
- Maria Mazzucotelli
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; Center for Agriculture Food Environment C3A, University of Trento, San Michele All'Adige, Trento, Italy
| | - Iuliia Khomenko
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy.
| | - Emanuela Betta
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy
| | - Irene Cetto
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy
| | - Brian Farneti
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy
| | | | | | - Eugenio Aprea
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; Center for Agriculture Food Environment C3A, University of Trento, San Michele All'Adige, Trento, Italy
| | - Franco Biasioli
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy
| |
Collapse
|
7
|
Mafata M, Stander M, Masike K, Buica A. Exploratory data fusion of untargeted multimodal LC-HRMS with annotation by LCMS-TOF-ion mobility: White wine case study. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:111-122. [PMID: 36942424 PMCID: PMC10068406 DOI: 10.1177/14690667231164096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Applied sciences have increased focus on omics studies which merge data science with analytical tools. These studies often result in large amounts of data produced and the objective is to generate meaningful interpretations from them. This can sometimes mean combining and integrating different datasets through data fusion techniques. The most strategic course of action when dealing with products of unknown profile is to use exploratory approaches. For omics, this means using untargeted analytical methods and exploratory data analysis techniques. The current study aimed to perform data fusion on untargeted multimodal (negative and positive mode) liquid chromatography-high-resolution mass spectrometry data using multiple factor analysis. The data fusion results were interpreted using agglomerative hierarchical clustering on biplot projections. The study reduced the thousands of spectral signals processed to less than a hundred features (a primary parameter combination of retention time and mass-to-charge ratios, RT_m/z). The correlations between cluster members (samples and features from) were calculated and the top 10% highly correlated features were identified for each cluster. These features were then tentatively identified using secondary parameters (drift time, ion mobility constant and collision cross-section values) from the ion mobility spectra. These ion mobility (secondary) parameters can be used for future studies in wine chemical analysis and added to the growing list of annotated chemical signals in applied sciences.
Collapse
Affiliation(s)
- Mpho Mafata
- School for Data Science and Computational Thinking,
Stellenbosch
University, Stellenbosch, South
Africa
- Department of Viticulture and Oenology, South African Grape and Wine
Research Institute, Stellenbosch
University, Stellenbosch, South
Africa
| | - Maria Stander
- Central Analytical Facility, Stellenbosch
University, Stellenbosch, South Africa
| | - Keabetswe Masike
- Central Analytical Facility, Stellenbosch
University, Stellenbosch, South Africa
| | - Astrid Buica
- School for Data Science and Computational Thinking,
Stellenbosch
University, Stellenbosch, South
Africa
- Department of Viticulture and Oenology, South African Grape and Wine
Research Institute, Stellenbosch
University, Stellenbosch, South
Africa
| |
Collapse
|
8
|
Augustini ALRM, Sielemann S, Telgheder U. Quantitation of Flavor Compounds in Refill Solutions for Electronic Cigarettes Using HS-GCxIMS and Internal Standards. Molecules 2022; 27:8067. [PMID: 36432167 PMCID: PMC9698780 DOI: 10.3390/molecules27228067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
New regulations on the use of flavor compounds in tobaccoless electronic cigarettes require comprehensive analyses. Gas chromatography coupled ion mobility spectrometry is on the rise as an analytical technique for analyzing volatile organic compounds as it combines sensitivity, selectivity, and easy usage with a full-range screening. A current challenge is the quantitative GCxIMS-analysis. Non-linear calibration methods are predominantly used. This work presents a new calibration method using linearization and its corresponding fit based on the relation between the reactant and analyte ions from the chemical ionization. The analysis of e-liquids is used to compare the presented calibration with an established method based on a non-linear Boltzmann fit. Since e-liquids contain matrix compounds that have been shown to influence the analyte signals, the use of internal standards is introduced to reduce these effects in GCxIMS-analysis directly. Different matrix mixtures were evaluated in the matrix-matched calibration to improve the quantitation further. The system's detection and quantitation limits were determined using a separate linear calibration. A matrix-matched calibration series of 29 volatile compounds with 12 levels were used to determine the concentration of these substances in a spiked, flavorless e-liquid and a banana-flavored e-liquid, validating the quality of the different calibrations.
Collapse
Affiliation(s)
- Alexander L. R. M. Augustini
- Hamm-Lippstadt University of Applied Sciences, Marker Allee 76-78, 59063 Hamm, Germany
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Stefanie Sielemann
- Hamm-Lippstadt University of Applied Sciences, Marker Allee 76-78, 59063 Hamm, Germany
| | - Ursula Telgheder
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
9
|
Zhu W, Benkwitz F, Kilmartin PA. Alternative Perspective on Rapid Wine Oxidation through Changes in Gas-Phase Volatile Concentrations, Highlighted by Matrix Component Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6177-6190. [PMID: 35559650 DOI: 10.1021/acs.jafc.2c00437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new perspective is presented to investigate the sensorially relevant gas-phase concentrations of volatile compounds in wine. This is achieved by measuring the partition coefficients and matrix-phase concentrations of volatiles using static headspace-gas chromatography-ion mobility spectrometry. Physicochemical properties that can contribute to the partition behaviors of 10 volatile esters, such as hydrophobicity and matrix temperature, are also discussed. Partition coefficients are then linked to quantitative measurements to obtain partial pressures, which describe the availability of volatile compounds in the gas phase. The concept of partition coefficients and partial pressure has then been applied to a time series of aroma changes due to oxidation in commercial wines. As a follow-up study, a full factorial design was devised to inspect the impact of three common wine matrix components, namely, copper, polyphenols, and ascorbic acid, on the partial pressure changes after 30-day oxidation treatment in either full-alcohol or low-alcohol simulated wine matrices. Interesting interactive effects between antioxidant behaviors and alcohol levels were elucidated, especially around the controversial use of ascorbic acid in winemaking. These results can guide winemakers who wish to minimize oxidative damage to wine aroma during wine storage or bulk transport, where ullage may be present or continual oxygen ingress may be occurring.
Collapse
Affiliation(s)
- Wenyao Zhu
- Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Kim Crawford Winery, Constellation Brands NZ, 237 Hammerichs Road, Blenheim 7273, New Zealand
| | - Frank Benkwitz
- Kim Crawford Winery, Constellation Brands NZ, 237 Hammerichs Road, Blenheim 7273, New Zealand
| | - Paul A Kilmartin
- Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|