1
|
Luo F, Zhu B, Wang X, Chen T, Chen L, Wu D, Du Y, Hu J. Taxifolin-iron nanozymes with excellent RONS scavenging ability for alleviating ethanol-induced gastric ulcer. MATERIALS TODAY NANO 2024; 28:100513. [DOI: 10.1016/j.mtnano.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Fan P, Xie S, Zhang Z, Yuan Q, He J, Zhang J, Liu X, Liu X, Xu L. Dendrobium officinale flos water extract ameliorates ethanol-induced acute gastric mucosal injury via inhibiting oxidative stress and inflammation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8593-8603. [PMID: 38923536 DOI: 10.1002/jsfa.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Dendrobium officinale flos (DOF), a novel food raw material, is used in Chinese folk medicine to nourish the stomach. However, there is still no available study to evaluate the effects of DOF on animal models of acute gastric injury and its mechanism by modern pharmacological research. RESULTS Herein, we characterized the major components of an aqueous extract of DOF and assessed its potential ameliorative effects in a rat model of acute gastric mucosal injury. The DOF water extract showed significant protective effects on the gastric mucosa and exhibited excellent antioxidant and anti-inflammatory activities. Acute gastric injury rat models induced by ethanol (6 mL kg-1) were pretreated with different doses of DOF water extract (50-100 mg kg-1 day-1), and the biological effects of DOF extract in gastric tissues were evaluated. DOF extract alleviated the symptoms of ethanol-stimulated acute gastric mucosal injury, as evidenced by a significant reduction in gastric injury index and the degree of gastric pathological changes. Additionally, treatment with DOF extract upregulated mucin expression in the gastric mucosa, attenuated oxidative stress, decreased the release of inflammatory mediators (TNF-α, IL-6), suppressed the expression of key proinflammatory enzymes (COX-2 and iNOS), reduced the phosphorylation of p38 MAPK and p65 NF-κB and increased the level of PGE2 in gastric tissues. CONCLUSION DOF exerts protective effects against ethanol-induced acute gastric mucosal injury, mainly by inhibiting inflammation and oxidative stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Shuchun Xie
- School of Pharmacy, Gannan Medical University, Ganzhou, China
- Ganzhou Cancer Hospital, Ganzhou, China
| | - ZhiQian Zhang
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Quan Yuan
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jiajiang He
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jie Zhang
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xinyue Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoyi Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Lieqiang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Xie Y, An L, Wang X, Ma Y, Bayoude A, Fan X, Yu B, Li R. Protection effect of Dioscoreae Rhizoma against ethanol-induced gastric injury in vitro and in vivo: A phytochemical and pharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118427. [PMID: 38844251 DOI: 10.1016/j.jep.2024.118427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscoreae Rhizoma, a kind of Chinese yam, is a medicinal and edible plant used in China for strengthening the spleen and stomach. However, there is a lack of modern pharmacology studies regarding its anti-gastric injury activity. AIM OF THE STUDY This study aimed to investigate the phytochemical composition of Chinese yam aqueous extract (CYW) and evaluate its gastroprotective effects against ethanol-induced gastric injury in vitro and in vivo. MATERIALS AND METHODS The active components of CYW were identified using HPLC-QTOF-MS/MS in combination with the GNPS molecular networking and network pharmacology. In vitro studies were performed in the RAW264.7/GES-1 cell coculture system. In vivo study, mice were treated with CYW (0.31, 0.63, and 3.14 g/kg BW, orally) for 14 days, followed by a single oral dose of ethanol (10 mL/kg BW) to induce gastric injury. The biochemical, inflammation and oxidative stress markers were analyzed using commercial kits. Histopathology was used to assess the degree of gastric injury. Gene and protein expressions were studied using RT-qPCR and western blotting, respectively. RESULTS CYW significantly restored the levels of SOD, GPx and CAT, and reduced the MDA content. Further analyses showed that CYW significantly alleviated the gastric oxidative stress by inhibiting the inflammation via decreasing p-NF-κB and p-IκB-α expression levels and inhibiting the generation of IL-6, TNF-α, and IL-1β. At the same time, the fraction remarkably upregulated Bcl-2, downregulated Bax and increased growth factor secretion, thereby prevented gastric mucous cell. Besides, The combination of HPLC-QTOF-MS/MS, GNPS molecular networking analysis, and network pharmacology demonstrated that linoleic acid, 3-acetyl-11-keto-beta-boswellic acid, adenosine, aminocaproic acid, tyramine, DL-tryptophan, cycloleucine, lactulose, melibiose, alpha-beta-trehalose, and sucrose would be the main active compounds of CYW against ethanol-induced gastric injury. CONCLUSION This study showed that CYW is potentially rich source of anti-oxidant and anti-inflammatory bioactive compounds. It showed efficacy against ethanol-induced gastric injury by inhibiting inflammation, oxidative stress, and apoptosis in the stomach. The results of the current work indicate that Dioscoreae Rhizoma could be utilized as a type of natural resource for production of new medicine and functional foods to prevent and/or ameliorate ethanol-induced gastric injury.
Collapse
Affiliation(s)
- Yujun Xie
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Luyao An
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyan Wang
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yajie Ma
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Alamusi Bayoude
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xinxin Fan
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Renshi Li
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Lin YL, Cheng KC, Kao YF, Wu K, Chen JW, Nakthong S, Chen YC. Valorization of broiler edible byproducts: a chicken-liver hydrolysate with hepatoprotection against binge drinking. Poult Sci 2024; 103:104023. [PMID: 39002366 PMCID: PMC11298911 DOI: 10.1016/j.psj.2024.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
Over 10,000 metric-ton broiler livers are produced annually in Taiwan. Concerning unpleasant odor and healthy issue, broiler livers are not attractive to consumers. Although the patented chicken-liver hydrolysates (CLHs) through pepsin digestion possess several biofunctionalities, there is no study on hepatoprotection of CLH-based formula capsule (GBHP01) against binge drinking (Whiskey, 50% Alc./Vol.). GBHP01 led to an accelerated blood-alcohol clearance in rats, as evidenced by lowering blood-alcohol increment within 0 to 4 h, increasing blood-alcohol decrement within 4 to 8 h, and smaller blood alcohol concentration areas under the curve (BAC AUC) in the 8-h period (p < 0.05). The ameliorative effects of GBHP01 against binge drinking in rats over 6 wk were attributed to accelerated alcohol metabolism by further increasing alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities while downregulating cytochrome P450 2E1 (CYP2E1) protein expression, elevating antioxidant capacity, decreasing zonula occludens-1 (ZO-1) protein decrement and serum endotoxin, and reducing inflammation related protein levels, that is, toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK), and proinflammatory cytokines. The development of CLH supplements could not only enhance the added value of broiler livers through nutraceutical development but also offer a strategy to maximize the utilization of poultry processing residues, as shown in this study.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106037, Taiwan; Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei City 116059, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106319, Taiwan; Department of Optometry, Asia University, Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404328, Taiwan
| | - Yi-Feng Kao
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung City 202008, Taiwan
| | - Kang Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106037, Taiwan
| | - Jr-Wei Chen
- Department of Animal Industry, Ministry of Agriculture, Executive Yuan, Taipei City 100212, Taiwan
| | - Sasitorn Nakthong
- Department of Food Safety Innovation, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom Province 73140, Thailand
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106037, Taiwan; Master Program in Global Agriculture Technology and Genomic Science, International College, National Taiwan University, Taipei City 106319, Taiwan..
| |
Collapse
|
5
|
Li YF, Chen T, Chen LH, Zhao RN, Wang XC, Wu D, Hu JN. Construction of diallyltrisulfide nanoparticles for alleviation of ethanol-induced acute gastric injury. Int J Pharm 2024; 657:124143. [PMID: 38663641 DOI: 10.1016/j.ijpharm.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Gastric ulcer, a significant health issue characterized by the degradation of the gastric mucosa, often arises from excessive gastric acid secretion and poses a challenge in current medical treatments due to the limited efficacy and side effects of first-line drugs. Addressing this, our study develops a novel therapeutic strategy leveraging gas therapy, specifically targeting the release of hydrogen sulfide (H2S) in the treatment of gastric ulcers. We successfully developed a composite nanoparticle, named BSA·SH-DATS, through a two-step process. Initially, bovine serum albumin (BSA) was sulfhydrated to generate BSA·SH nanoparticles via a mercaptosylation method. Subsequently, these nanoparticles were further functionalized by incorporating diallyltrisulfide (DATS) through a precise Michael addition reaction. This sequential modification resulted in the creation of BSA·SH-DATS nanoparticles. Our comprehensive in vitro and in vivo investigations demonstrate that these nanoparticles possess an exceptional ability for site-specific action on gastric mucosal cells under the controlled release of H2S in response to endogenous glutathione (GSH), markedly diminishing the production of pro-inflammatory cytokines, thereby alleviating inflammation and apoptosis. Moreover, the BSA·SH-DATS nanoparticles effectively regulate critical inflammatory proteins, including NF-κB and Caspase-3. Our study underscores their potential as a transformative approach for gastric ulcer treatment.
Collapse
Affiliation(s)
- Yan-Fei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ru-Nan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin-Chuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Chen Y, Zhao Y, Lu H, Zhang W, Gai Y, Niu G, Meng X, Lv H, Qian X, Ding X, Chen J. Protective effect of short-chain fructo-oligosaccharides from chicory on alcohol-induced injury in GES-1 cells via Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Front Nutr 2024; 11:1374579. [PMID: 38807640 PMCID: PMC11132183 DOI: 10.3389/fnut.2024.1374579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Numerous studies have demonstrated that polysaccharides derived from chicory possess the ability to regulate host signaling and modify mucosal damage. Yet, the effect and mechanism of short-chain fructo-oligosaccharides (scFOS) on gastric mucosa remain unclear. Hence, the protective effect of three scFOS (1-Kestose, Nystose, and 1F-Fructofuranosylnystose) against ethanol-induced injury in gastric epithelial (GES-1) cells, and the underlying molecular mechanism involved was investigated in this study. Treatment with 7% ethanol decreased the cell viability of GES-1 cells, resulting in oxidative stress and inflammation. However, pretreatment with scFOS exhibited significant improvements in cell viability, and mitigated oxidative stress and inflammation. scFOS markedly elevated the protein expression of Nrf2, HO-1, SOD1 and SOD2, while suppressing the expression of Keap1. scFOS pretreatment could also maintain mitochondrial membrane potential balance and reduce apoptosis. In addition, scFOS was observed to reduce the protein level of NLRP3, Caspase-1 and ASC. In conclusion, scFOS served a preventive function in mitigating oxidative stress and inflammation in ethanol-exposed GES-1 cells through modulation of the Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Collectively, the results indicated that scFOS could significantly mitigate ethanol-induced gastric cell damage, suggesting its potential for safeguarding gastrointestinal health.
Collapse
Affiliation(s)
- Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yanan Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hao Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaoguo Qian
- Fengning PingAn High-Tech Industrial Co., Ltd, Chengde, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Liu X, Yuan Z, Luo L, Wang T, Zhao F, Zhang J, Liu D. Protective role of fruits of Rosa odorata var. gigantea against WIRS-induced gastric mucosal injury in rats by modulating pathway related to inflammation, oxidative stress and apoptosis. CHINESE HERBAL MEDICINES 2024; 16:263-273. [PMID: 38706820 PMCID: PMC11064581 DOI: 10.1016/j.chmed.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 10/15/2023] [Indexed: 05/07/2024] Open
Abstract
Objective Rosa odorata var. gigantea is a popular medicinal plant. Some studies have demonstrated that ethanolic extract of the fruits of R. odorata var. gigantea (FOE) has gastroprotective properties. The aim of this study was to investigate the gastroprotective activity of FOE on water immersion restrained stress (WIRS)-induced gastric mucosal injury in a rat model and elucidate the possible molecular mechanisms involved. Methods A rat stress ulcer model was established in this study using WIRS. After rats were treated with FOE orally for 7 d, the effect of FOE treatment was analyzed by hematoxylin and eosin (H&E) staining, and the changes of inflammatory factors, oxidative stress factors, and gastric-specific regulatory factors and pepsin in the blood and gastric tissues of rats were examined by ELISA assay. Molecular mechanism of FOE was investigated by immunohistochemical assay and Western blot. Results Compared with the WIRS group, FOE could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. FOE significantly preserved the antioxidants glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and catalase (CAT) contents; anti-inflammatory cytokines interleukin-10 (IL-10) and prostaglandin E2 (PGE2) levels as well as regulatory factors tumor necrosis factor-α (TGF-α) and somatostatin (SS) contents, while decreasing malondialdehyde (MDA), nitric oxide synthase (iNOS), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), gastrin (GAS) and endothelin (ET) levels. Moreover, FOE distinctly upregulated the expression of Nrf2, HO-1, Bcl2 and proliferating cell nuclear antigen (PCNA). In addition, FOE activated the expression of p-EGFR and downregulated the expression of NF-κB, Bax, Cleaved-caspase-3, Cyto-C and Cleaved-PARP1, thus promoting gastric mucosal cell survival. Conclusion The current work demonstrated that FOE exerted a gastroprotective activity against gastric mucosal injury induced by WIRS. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis systems.
Collapse
Affiliation(s)
- Xinnan Liu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yuan
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Teng Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingze Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Dailin Liu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| |
Collapse
|
8
|
Chen S, Yi J, Kang Q, Song M, Raubenheimer D, Lu J. Identification of a Novel Peptide with Alcohol Dehydrogenase Activating Ability from Ethanol-Induced Lactococcus lactis: A Combined In Silico Prediction and In Vivo Validation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5746-5756. [PMID: 38450489 DOI: 10.1021/acs.jafc.3c07632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Alcohol dehydrogenase (ADH) is a crucial rate-limiting enzyme in alcohol metabolism. Our previous research found that ethanol-induced intracellular extracts of Lactococcus lactis (L. lactis) could enhance alcohol metabolism in mice, but the responsible compounds remain unidentified. The study aimed to screen potential ADH-activating peptides from ethanol-induced L. lactis using virtual screening and molecular docking calculation. Among them, the pentapeptide FAPEG might bind to ADH through hydrophobic interaction and hydrogen bonds, then enhancing ADH activity. Spectroscopy analysis further investigated the peptide-enzyme interaction between FAPEG and ADH, including changes in the amino acid residue microenvironment and secondary structural alterations. Furthermore, FAPEG could protect against alcoholic liver injury (ALI) in mice by reducing blood alcohol concentration, enhancing the activity of antioxidant and alcohol metabolism enzymes, and attenuating alcohol-induced hepatotoxicity, which was related to the activation of the Nrf2/keap1/HO-1 signaling pathway. The study provided preliminary evidence that the generation of ADH-activating peptides in ethanol-induced L. lactis has the potential in preventing ALI in mice using in silico prediction and in vivo validation approaches.
Collapse
Affiliation(s)
- Sisi Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Physical Education College, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mo Song
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
9
|
Du K, Zheng C, Kuang Z, Sun Y, Wang Y, Li S, Meng D. Gastroprotective effect of eupatilin, a polymethoxyflavone from Artemisia argyi H.Lév. & Vaniot, in ethanol-induced gastric mucosal injury via NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116986. [PMID: 37536645 DOI: 10.1016/j.jep.2023.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi H.Lév. & Vaniot (AA) has been extensively utilized as an important medicine and food homology in China, Japan, Korea, and eastern parts of Russia, owing to its pharmacological effects, which include anti-inflammatory, antibacterial, antitussive, and antiallergic properties. Despite the extract of AA can significantly alleviate gastric mucosal injury, its precise material basis for effectiveness is not yet clear. As one of the polymethoxy flavonoids with high content in AA, the gastroprotective activity and molecular mechanism of eupatilin (EUP) require further investigation. AIM OF THE STUDY This study aims to investigate the gastroprotective effects and possible mechanisms of EUP by using an ethanol-induced gastric mucosal injury model in rats. MATERIALS AND METHODS EUP was isolated from 95% ethanol extract of AA using a systematic phytochemical method. The gastroprotective activity of EUP was evaluated using a male SD rat model with ethanol-induced gastric mucosa injury. Histopathology evaluation of gastric tissues was performed using hematoxylin and eosin (H&E) staining. The levels of cytokines in the plasma and tissues were tested using the ELISA kits, while western blot analysis was employed to assess the expressions of COX-2, iNOS, and NF-κB pathway proteins. RESULTS A sufficient amount of EUP was obtained from AA through chromatographic methods and identified by NMR experiment. In vivo, experimental results proved that EUP could significantly alleviate pathological features, increased SOD, GSH, and IL-10 levels, and decreased the contents of MDA, TNF-α, IL-1β, and IL-6. Further in vitro and in vivo Western blot experimental results showed that EUP significantly down-regulates the expressions of the NF-κB signal pathway to relieve inflammatory responses. CONCLUSION This study demonstrated that EUP could exert gastroprotective effects by inhibiting inflammation, enhancing gastric mucosal defense, and ameliorating oxidative stress, which is beneficial for providing scientific data for the development of gastric protection.
Collapse
Affiliation(s)
- Kaicheng Du
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Changwei Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Zhulingzhi Kuang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Yiwei Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Shuang Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China.
| |
Collapse
|
10
|
Zheng Z, Sun N, Mao C, Tang Y, Lin S. Val-Leu-Leu-Tyr (VLLY) Alleviates Ethanol-Induced Gastric Mucosal Cell Impairment by Improving Mitochondrial Fission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18722-18734. [PMID: 37980612 DOI: 10.1021/acs.jafc.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ethanolic gastric mucosal impairment is one of the most common disorders in the gastrointestinal system. In this study, we investigated the potential alleviating effects of sea cucumber peptides on Ges-1 impairment caused by ethanol and the associated mechanisms. The sea cucumber peptide VLLY could promote the proliferation and migration of healthy Ges-1 cells. After ethanol injury, VLLY peptide treatment could greatly promote the migration of Ges-1 cells, scavenge intracellular and mitochondrial ROS, reverse mitochondrial fission and F-actin depolymerization, and improve mitochondrial respiration. VLLY peptide restored mitochondrial dynamics by downregulating Drp1 and Fis1 and upregulating Mfn2 against excessive mitochondrial fission. In addition, the VLLY peptide maintained the mitochondrial membrane potential, ablated the leakage of cytochrome c to the cytoplasm, upregulated the expression of the antiapoptotic factor Bcl-XL, decreased the expression of the proapoptotic factors of Bax, BAD, and cleaved caspase-3, and finally blocked the mitochondria-related apoptotic pathway. These findings strongly suggested that sea cucumber peptides could promote proliferation and migration of healthy Ges-1 cells and reverse ethanol-induced excess mitochondrial fission and maintain mitochondrial homeostasis through the Fis1/Bax pathway, thereby improving ethanol-induced apoptosis. VLLY offers a new perspective for improving the ethanolic gastric mucosal epithelial cell injury.
Collapse
Affiliation(s)
- Zhihong Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chuwen Mao
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Tang
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
11
|
Chen T, Bao S, Chen J, Zhang J, Wei H, Hu X, Liang Y, Li J, Yan S. Xiaojianzhong decoction attenuates aspirin-induced gastric mucosal injury via the PI3K/AKT/mTOR/ULK1 and AMPK/ULK1 pathways. PHARMACEUTICAL BIOLOGY 2023; 61:1234-1248. [PMID: 37602379 PMCID: PMC10443964 DOI: 10.1080/13880209.2023.2243998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Xiaojianzhong decoction (XJZD), classically prescribed in Chinese medicine, has protective and healing effects on gastric mucosal injury. However, the exact mechanism behind this effect remains unclear. OBJECTIVE To investigate the effect of XJZD on gastric mucosal injury and explore its underlying mechanisms. MATERIALS AND METHODS C57BL/6 mice were randomized into six groups (n = 10): the control group receiving sterile water, the model (aspirin 300 mg/kg), the XJZD high-dose (12 g/kg), XJZD medium-dose (6 g/kg), XJZD low-dose (3 g/kg) and omeprazole (20 mg/kg) groups, by gavage daily for 14 days. The area of gastric mucosal injury, mucosal injury index and degree of histopathological damage were analysed. Gastric mucosal epithelial cell apoptosis was detected. Epithelial cell autophagy was observed. The expression levels of tight junction proteins and proteins related to apoptosis, autophagy and the pentose phosphate pathway were analysed. RESULTS The results showed that after treatment with XJZD (12, 6 and 3 g/kg), the mucosal injury area was reduced (83.4%, 22.6% and 11.3%), the expression level of ZO-1 and occludin was up-regulated, the apoptosis rate of epithelial cells was reduced (40.8%, 25.4% and 8.7%), the expression of autophagy-related proteins LC3 and Beclin1 was decreased and the expression of p62 was increased, the PI3K/AKT/mTOR/ULK1(ser757) signalling pathway was activated, and the AMPK/ULK1(ser317) signalling pathway was inhibited. In addition, XJZD can antagonize the imbalance of redox homeostasis caused by aspirin and protect the gastric mucosa. DISCUSSION AND CONCLUSIONS XJZD protects against aspirin-induced gastric mucosal injury, implying it to be a potential therapeutic agent.
Collapse
Affiliation(s)
- Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Jiaxiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Hailiang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Xin Hu
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, PR China
| | - Yan Liang
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, PR China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Department of Infectious Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| |
Collapse
|
12
|
Huang H, Hou Y, Chen L, He W, Wang X, Zhang D, Hu J. Multifunctional gallic acid self-assembled hydrogel for alleviation of ethanol-induced acute gastric injury. Int J Pharm 2023; 645:123372. [PMID: 37716487 DOI: 10.1016/j.ijpharm.2023.123372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
Ethanol-induced acute gastric injury is a prevalent type of digestive tract ulcer, yet conventional treatments strategies frequently encounter several limitations, such as poor bioavailability, degradation of enzymes and adverse side effects. Gallic acid (GA), a natural compound extracted from dogwood, has demonstrated potential protective effects in mitigating acute gastric injury. However, its poor stability and limited bioavailability have restricted applications in vivo. To address these issues, we report a hydrogel constructed only by gallic acid with high bioavailability for alleviation of gastric injury. Molecular dynamic simulation studies revealed that the self-assembly of GA into hydrogel was predominantly attributed to π-π and hydrogen bonds. After assembling, the GA hydrogel exhibits superior anti-oxidative stress, anti-apoptosis and anti-inflammatory properties compared with free GA. As anticipated, in vitro experiments demonstrated that GA hydrogel possessed the remarkable ability to promote the proliferation of GES-1 cells, and alleviates apoptosis and inflammation caused by ethanol. Subsequent in vivo investigation further confirmed that GA hydrogel significantly alleviated ethanol-triggered acute gastric injury. Mechanistically, GA hydrogel treatment enhanced the antioxidant capacity, reduced oxidative stress while simultaneously suppressing the secretion of pro-inflammatory cytokines and reduced the production of pro-apoptotic proteins during the process of gastric injury. Our finding suggest that this multifunctional GA hydrogel is a promising candidate for gastric injury, particularly in cases of ethanol-induced acute gastric injury.
Collapse
Affiliation(s)
- Haibo Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiyang Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wanying He
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinchuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Li G, Liu X, Miao Z, Hu N, Zheng X. Preparation of Corn Peptides with Anti-Adhesive Activity and Its Functionality to Alleviate Gastric Injury Induced by Helicobacter pylori Infection In Vivo. Nutrients 2023; 15:3467. [PMID: 37571404 PMCID: PMC10421185 DOI: 10.3390/nu15153467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
More than 50% of the world population is infected with Helicobacter pylori (H. pylori), which is classified as group I carcinogen by the WHO. H. pylori surface adhesins specifically recognize gastric mucosal epithelial cells' (GES-1 cells) receptor to complete the adhesion. Blocking the adhesion with an anti-adhesion compound is an effective way to prevent H. pylori infection. The present study found that corn protein hydrolysate, hydrolyzed by Neutral, effectively alleviated gastric injury induced by H. pylori infection through anti-adhesive and anti-inflammatory effects in vitro and in vivo. The hydrolysate inhibited H. pylori adhesion to GES-1 cells significantly, and its anti-adhesive activity was 50.44 ± 0.27% at 4 mg/mL, which indicated that the hydrolysate possessed a similar structure to the GES-1 cells' receptor, and exhibited anti-adhesive activity in binding to H. pylori. In vivo, compared with the H. pylori infection model group, the medium and high dose of the hydrolysate (400-600 mg/kg·bw) significantly decreased (p < 0.05) the amount of H. pylori colonization, pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and MPO), chemokines (KC and MCP-1) as well as key metabolites of NF-κB signaling pathway levels (TLR4, MyD88 and NF-κB), and it increased antioxidant enzyme contents (SOD and GSH-Px) and the mitigation of H. pylori-induced pathological changes in the gastric mucosa. Taken together, these results indicated that the hydrolysate intervention can prevent H. pylori-induced gastric injury by anti-adhesive activity and inhibiting the NF-κB signaling pathway's induction of inflammation. Hence, the corn protein hydrolysate might act as a potential anti-adhesive agent to prevent H. pylori infection.
Collapse
Affiliation(s)
- Guanlong Li
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Xiaolan Liu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
| | - Zhengfei Miao
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
| | - Nan Hu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
| | - Xiqun Zheng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| |
Collapse
|
14
|
Ayimbila F, Keawsompong S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr Nutr Rep 2023; 12:290-307. [PMID: 37032416 PMCID: PMC10088739 DOI: 10.1007/s13668-023-00468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE OF REVIEW Global concerns about population growth, economic, and nutritional transitions and health have led to the search for a low-cost protein alternative to animal origins. This review provides an overview of the viability of exploring mushroom protein as a future protein alternative considering the nutritional value, quality, digestibility, and biological benefits. RECENT FINDINGS Plant proteins are commonly used as alternatives to animal proteins, but the majority of them are low in quality due to a lack of one or more essential amino acids. Edible mushroom proteins usually have a complete essential amino acid profile, meet dietary requirements, and provide economic advantages over animal and plant sources. Mushroom proteins may provide health advantages by eliciting antioxidant, antitumor, angiotensin-converting enzyme (ACE), inhibitory and antimicrobial properties over animal proteins. Protein concentrates, hydrolysates, and peptides from mushrooms are being used to improve human health. Also, edible mushrooms can be used to fortify traditional food to increase protein value and functional qualities. These characteristics highlight mushroom proteins as inexpensive, high-quality proteins that can be used as a meat alternative, as pharmaceuticals, and as treatments to alleviate malnutrition. Edible mushroom proteins are high in quality, low in cost, widely available, and meet environmental and social requirements, making them suitable as sustainable alternative proteins.
Collapse
Affiliation(s)
- Francis Ayimbila
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand.
| |
Collapse
|
15
|
Zhou C, Chen J, Liu K, Maharajan K, Zhang Y, Hou L, Li J, Mi M, Xia Q. Isoalantolactone protects against ethanol-induced gastric ulcer via alleviating inflammation through regulation of PI3K-Akt signaling pathway and Th17 cell differentiation. Biomed Pharmacother 2023; 160:114315. [PMID: 36716661 DOI: 10.1016/j.biopha.2023.114315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Gastric ulcer (GU) is one of the most prevalent digestive system diseases in humans, and it has been linked to inflammation. Previous studies have demonstrated the anti-inflammatory potential of isoalantolactone (IAL), a sesquiterpene lactone isolated from Radix Inulae. However, the pharmacological effects of IAL on GU and its mechanism of action are still unclear. Hence, the present study is aimed to investigate the anti-inflammatory potential of IAL on GU. Firstly, we assessed the effect of IAL on ethanol-induced injury of human gastric epithelial cells and the levels of inflammatory cytokines in cell culture supernatants. Then, the anti-inflammatory effects of IAL were confirmed in vivo using zebrafish inflammation models. Furthermore, the mechanism of IAL against GU was preliminarily discussed through network pharmacology and molecular docking studies. Quantitative real-time PCR assays were also used to confirm the mechanism of IAL action. ALB, EGFR, SRC, HSP90AA1, and CASP3 were found for the first time as the key targets of the IAL anti-GU. PI3K-Akt signaling pathway and Th17 cell differentiation were identified to play a crucial role in the anti-GU effects of IAL. In conclusion, we found that IAL has anti-inflammatory effects both in vitro and in vivo, and showed potential protective effects against ethanol-induced GU.
Collapse
Affiliation(s)
- Chaoyi Zhou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jing Chen
- Tibetan traditional medicine college, Lhasa 850000, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Linhua Hou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianheng Li
- School of Pharmacy, Hebei University, Baoding 071002, China.
| | - Ma Mi
- Tibetan traditional medicine college, Lhasa 850000, China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
16
|
Wang Y, Liu X, Liang L, Zhu Y, Zhang J, Luo L, Wang P, Liu D. The protective effect of quinoa on the gastric mucosal injury induced by absolute ethanol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:944-956. [PMID: 36066553 DOI: 10.1002/jsfa.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/31/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gastric mucosal injury caused by ethanol is a common gastrointestinal disease. Quinoa (Chenopodium quinoa Willd.), as a nutrient-rich grain, plays a significant role in preventing and treating gastric mucosal damage. The present study aimed to explore the protective effect of quinoa on alcohol-induced gastric mucosal damage and its possible mechanism. RESULTS The ethanol-induced gastric mucosal injury rat model was used for in vivo experiments and H2 O2 -induced GES-1 cells for in vitro experiments to elucidate the protective effect of quinoa. The results show that quinoa water extract can increase the superoxide dismutase level and decrease the malondialdehyde level in vitro and in vivo. Furthermore, quinoa also reduced the bleeding point and bleeding area in rats with ethanol-induced gastric mucosal injury and improved gastric histopathological changes. H2 O2 significantly increased the levels of inflammatory factors in GES-1 cells, which were markedly ameliorated by quinoa water extract. Likewise, quinoa water extract regulated the protein expression levels of Nrf2, Keap1, HO-1, p-IKK, and p-NF-κB through Nrf2 and nuclear factor-κB signaling pathways, reducing the production of oxidative stress and inflammation, thereby repairing the damaged gastric mucosa. CONCLUSION The findings of this study demonstrated that quinoa shows protective effect against ethanol-induced gastric mucosal injury through its anti-inflammatory and anti-oxidant effects. We propose that our research will provide a reference for quinoa as a functional food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yansheng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Xinnan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lipeng Liang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Yanru Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Ping Wang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| |
Collapse
|
17
|
Han G, Wang J, Li Y, Chen Z, Xu X, Liu T, Wang Y, Bai F, Liu K, Zhao Y. Novel Peptide from the Hydrolysate of Hybrid Sturgeon ( Acipenseridae) Spinal Cord: Isolation, Identification, and Anti-proliferative Effects in Human Cervix Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:770-779. [PMID: 36541899 DOI: 10.1021/acs.jafc.2c07594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anti-proliferative peptides have recently attracted attention for their excellent bioactivity and biocompatibility. In this paper, five novel anti-proliferative peptides were identified from the hydrolysate of hybrid sturgeon spinal cord (HSSC). In addition, the structure-activity relationship of the novel anti-proliferative peptides was explored. In vitro experiments indicated that the peptide "VDSVLDVVRK" presented the highest inhibition of HeLa cell growth in all samples (IC50 = 2.5 μM). VDSVLDVVRK showed a random coil secondary structure and nanomicelles in the tumor microenvironment. Transmission electron microscopy results confirmed that nanomicelles disassemble as the concentration of VDSVLDVVRK decreases. Furthermore, VDSVLDVVRK could induce HeLa cell apoptosis by increasing the expression of Cyt-c (98.65 ± 1.85%, p < 0.01) and caspase-9 (39.85 ± 1.81%, p < 0.01). In this study, the anti-proliferative mechanism of the HSSC peptide was discussed, which provided a theoretical basis for the research and development of anti-proliferative functional food.
Collapse
Affiliation(s)
- Guixin Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002 Zhejiang, P.R. China
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Zefan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Tianhong Liu
- Marine Science Research Institute of Shandong Province, Qingdao 266104 Shandong, P.R. China
| | - Ying Wang
- Marine Science Research Institute of Shandong Province, Qingdao 266104 Shandong, P.R. China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002 Zhejiang, P.R. China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| |
Collapse
|
18
|
Huang Y, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Ovotransferrin alleviated acute gastric mucosal injury in BALB/c mice caused by ethanol. Food Funct 2023; 14:305-318. [PMID: 36503960 DOI: 10.1039/d2fo02364d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute gastric mucosal injury is a common gastrointestinal disorder, which influences patients' life quality. It was found that ovotransferrin (OVT) reduces the abundance of Helicobacter pylori associated with gastric disease in the intestine of immunosuppressed mice. To clarify its gastric protective function, the present study investigated the effect of OVT on BALB/c mice with ethanol-induced gastric mucosal injury. Results showed that OVT attenuated the ethanol-induced gastric mucosal injury. Furthermore, OVT effectively downregulated the expression of inflammatory markers (tumor necrosis factor-α, interleukin (IL)-1β and IL-6) but enhanced the secretion of IL-4, IL-10 and prostaglandin E2. And OVT pretreatment significantly inhibited the activation of the MAPK/NF-κB pathway. Additionally, OVT improved gastric antioxidant ability by increasing superoxide dismutase and glutathione levels and decreasing malondialdehyde and myeloperoxidase content. Pretreatment with OVT modulated the equilibrium between B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X. The above results indicated that OVT alleviated inflammatory responses, oxidative stress and apoptosis in gastric mucosal injury mice caused by ethanol.
Collapse
Affiliation(s)
- Yan Huang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
19
|
Enhancement of the Bioavailability and Anti-Inflammatory Activity of Glycyrrhetinic Acid via Novel Soluplus®—A Glycyrrhetinic Acid Solid Dispersion. Pharmaceutics 2022; 14:pharmaceutics14091797. [PMID: 36145545 PMCID: PMC9504515 DOI: 10.3390/pharmaceutics14091797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Glycyrrhetinic acid (GA) is an anti-inflammatory drug with potential for development. However, the poor solubility of GA in water leads to extremely low bioavailability, which limits its clinical applications. Solid dispersions have become some of the most effective strategies for improving the solubility of poorly soluble drugs. Soluplus®, a non-cytotoxic amphiphilic solubilizer, significantly improves the solubility of BCS II drugs and improves the bioavailability of insoluble drugs. l-arginine (L-Arg) can be used as a small molecular weight excipient to assist in improving the solubility of insoluble drugs. In this study, we developed a new formulation for oral administration by reacting GA and L-Arg to form salts by co-solvent evaporation and then adding the polymer-solvent Soluplus® with an amphiphilic chemical structure to prepare a solid dispersion GA-SD. The chemical and physical properties of GA-SD were characterized by DLS, TEM, XRD, FT-IR and TG. The anti-inflammatory activity of GA-SD was verified by LPS stimulation of RAW 267.5 cells simulating a cellular inflammation model, TPA-induced ear edema model in mice, and ethanol-induced gastric ulcer model. The results showed that the amide bond and salt formation of GA-SD greatly improved GA solubility. GA-SD effectively improved the anti-inflammatory effect of free GA in vivo and in vitro, and GA-SD had no significant effect on liver and kidney function, no significant tissue toxicity, and good biosafety. In conclusion, GA-SD with L-Arg and Soluplus® is an effective method to improve the solubility and bioavailability of GA. As a safe and effective solid dispersion, it is a promising anti-inflammatory oral formulation and provides some references for other oral drug candidates with low bioavailability.
Collapse
|
20
|
Sun L, Li M, Zhang S, Bao Z, Lin S. Mechanism of Ser-Ala-Gly-Pro-Ala-Phe treatment with a pulsed electric field to improve ethanol-induced gastric mucosa injury in mice. Food Funct 2022; 13:6716-6725. [PMID: 35662307 DOI: 10.1039/d2fo00567k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper focused on the mechanism of Ser-Ala-Gly-Pro-Ala-Phe (SAGPAF) treatment to improve gastric mucosal injury in mice. A gastric mucosa injury model induced by ethanol was established, and the superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, nitric oxide (NO) content and myeloperoxidase (MPO) level were determined. We performed macroscopic and histopathological evaluation of the gastric organs. Moreover, we analyzed the mechanism of SAGPAF treatment by western blotting. Compared with the model group, the SOD activity and NO content in the medium-dose and high-dose SAGPAF groups of treated with 10 kV cm-1 field intensity were significantly increased. The MDA content and MPO level were decreased significantly. They significantly reduced the gastric mucosal injury induced by ethanol (21.17 ± 3.51% and 13.99 ± 2.00%) and the histopathological scores (3.83 ± 0.40 and 4.33 ± 0.37) (P < 0.05). Western blotting analysis showed that SAGPAF after pulsed electric field (PEF) treatment improved gastric injury by reducing protein phosphorylation. These findings provided strong evidence that PEF-treated SAGPAF enhanced the gastric mucosal barrier function by inhibiting the activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathways, reducing the ethanol-induced inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Liangzi Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Mengqi Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| |
Collapse
|
21
|
Anti-Adipogenic Lanostane-Type Triterpenoids from the Edible and Medicinal Mushroom Ganoderma applanatum. J Fungi (Basel) 2022; 8:jof8040331. [PMID: 35448561 PMCID: PMC9028577 DOI: 10.3390/jof8040331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Our previous research has shown that lanostane triterpenoids from Ganoderma applanatum exhibit significant anti-adipogenesis effects. In order to obtain more structurally diverse lanostane triterpenoids to establish a structure–activity relationship, we continued the study of lanostane triterpenoids from the fruiting bodies of G. applanatum, and forty highly oxygenated lanostane-type triterpenoinds (1–40), including sixteen new compounds (1–16), were isolated. Their structures were elucidated using NMR spectra, X-ray crystallographic analysis, and Mosher’s method. In addition, some of their parts were evaluated to determine their anti-adipogenesis activities in the 3T3-L1 cell model. The results showed that compounds 16, 22, 28, and 32 exhibited stronger anti-adipogenesis effects than the positive control (LiCl, 20 mM) at the concentration of 20 μM. Compounds 15 and 20 could significantly reduce the lipid accumulation during the differentiation process of 3T3-L1 cells, comparable to the untreated group. Their IC50 values were 6.42 and 5.39 μM, respectively. The combined results of our previous and present studies allow us to establish a structure-activity relationship of lanostane triterpenoids, indicating that the A-seco-23→26 lactone skeleton could play a key role in anti-adipogenesis activity.
Collapse
|