1
|
Guo D, Yang Y, Wu Y, Liu Y, Cao L, Shi Y, Wan N, Wu Z. Chemical Composition Analysis and Discrimination of Essential Oils of Artemisia Argyi Folium from Different Germplasm Resources Based on Electronic Nose and GC/MS Combined with Chemometrics. Chem Biodivers 2023; 20:e202200991. [PMID: 36650717 DOI: 10.1002/cbdv.202200991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
In this study, the electronic nose and GC/MS were used to analyze the chemical components of essential oils from different germplasm resources of Artemisia argyi Folium (A. argyi), in order to quickly identify essential oils of A. argyi from different germplasm resources and clarify the differences among different A. argyi samples. The essential oils of A. argyi were extracted by steam distillation. This article describes for the first time that electronic nose combined with chemometrics can distinguish the essential oils of A. argyi from different germplasm, which proves the reliability and potential of this technology. GC/MS was used to identify 134 volatile components from the essential oil of A. argyi. The main bioactive components were cineole, thujarone, artemisia ketone, β-caryophyllene, (-)-4-terpinol, 3,3,6-trimethyl-1,5-heptadien-4-ol, (-)-α-thujone, camphor, borneol. In addition, the results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that there were significant differences in the essential oils of A. argyi from different germplasm resources, terpenes, alcohols and ketones played an important role in identifying the essential oils of A. argyi from different germplasm resources. This indicates that electronic nose and GC/MS combined with chemometrics can be used as reliable techniques to identify different germplasm resources of A. argyi, and provide certain reference value for quality evaluation, selection of high-quality varieties and rational development of resources of A. argyi.
Collapse
Affiliation(s)
- Dongyun Guo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang, 330004, China
| | - Yiqin Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yi Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Lan Cao
- Research Center for Traditional Chinese Medicine Resourcing and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yan Shi
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang, 330004, China
| | - Na Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|