1
|
Zong Z, Zhang X, Chen P, Fu Z, Zeng Y, Wang Q, Chipot C, Leggio LL, Sun Y. Elucidation of the noncovalent interactions driving enzyme activity guides branching enzyme engineering for α-glucan modification. Nat Commun 2024; 15:8760. [PMID: 39384762 PMCID: PMC11464733 DOI: 10.1038/s41467-024-53018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Branching enzymes (BEs) confer to α-glucans, the primary energy-storage reservoir in nature, a variety of features, like slow digestion. The full catalytic cycle of BEs can be divided in six steps, namely two covalent catalytic steps involving glycosylation and transglycosylation, and four noncatalytic steps involving substrate binding and transfers (SBTs). Despite the ever-growing wealth of biochemical and structural information on BEs, clear mechanistic insights into SBTs from an industrial-performance perspective are still missing. Here, we report a Rhodothermus profundi BE (RpBE) endowed with twice as much enzymatic activity as the Rhodothermus obamensis BE currently used in industry. Furthermore, we focus on the SBTs for RpBE by means of large-scale computations supported by experiment. Engineering of the crucial positions responsible for the initial substrate-binding step improves enzymatic activity significantly, while offering a possibility to customize product types. In addition, we show that the high-efficiency substrate-transfer steps preceding glycosylation and transglycosylation are the main reason for the remarkable enzymatic activity of RpBE, suggestive of engineering directions for the BE family.
Collapse
Affiliation(s)
- Zhiyou Zong
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Xuewen Zhang
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Peng Chen
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zhuoyue Fu
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yan Zeng
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qian Wang
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Université de Lorraine CNRS, Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, USA
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Yuanxia Sun
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
2
|
Xie T, Shen J, Geng Z, Wu F, Dong Y, Cui Z, Liang Y, Ye X. Antifungal characterizations of a novel endo-β-1,6-glucanase from Flavobacterium sp. NAU1659. Appl Microbiol Biotechnol 2024; 108:437. [PMID: 39133429 PMCID: PMC11319602 DOI: 10.1007/s00253-024-13269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
β-1,6-Glucan plays a crucial role in fungal cell walls by linking the outer layer of mannoproteins and the inner layer of β-1,3-glucan, contributing significantly to the maintenance of cell wall rigidity. Therefore, the hydrolysis of β-1,6-glucan by β-1,6-glucanase directly leads to the disintegration of the fungal cell wall. Here, a novel β-1,6-glucanase FlGlu30 was identified from the endophytic Flavobacterium sp. NAU1659 and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction conditions of purified FlGlu30 were 50℃ and pH 6.0, resulting in a specific activity of 173.1 U/mg using pustulan as the substrate. The hydrolyzed products of FlGlu30 to pustulan were mainly gentianose within 1 h of reaction. With the extension of reaction time, gentianose was gradually hydrolyzed to glucose, indicating that FlGlu30 is an endo-β-1,6-glucanase. The germination of Magnaporthe oryzae Guy11 spores could not be inhibited by FlGlu30, but the appressorium formation of spores was completely inhibited under the concentration of 250.0 U/mL FlGlu30. The disruptions of cell wall and accumulation of intracellular reactive oxide species (ROS) were observed in FlGlu30-treated M. oryzae Guy11 cells, suggesting the significant importance of β-1,6-glucan as a potential antifungal target and the potential application of FlGlu30. KEY POINTS: • β-1,6-Glucan is a key component maintaining the rigid structure of fungal cell wall. • β-1,6-Glucanase is an antifungal protein with significant potential applications. • FlGlu30 is the first reported β-1, 6-glucanase derived from Flavobacterium.
Collapse
Affiliation(s)
- TingTing Xie
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Jiming Shen
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Zhitao Geng
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Fan Wu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Yiwei Dong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Yongheng Liang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
3
|
Li Y, Qi X, Wang Q, He Y, Li Z, Cen X, Wei L. Comprehensive analysis of key host gene-microbe networks in the cecum tissues of the obese rabbits induced by a high-fat diet. Front Cell Infect Microbiol 2024; 14:1407051. [PMID: 38947127 PMCID: PMC11211605 DOI: 10.3389/fcimb.2024.1407051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhupeng Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Cen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhao Y, Yang K, Wang Y, Li X, Xia C, Huang Y, Li Z, Zhu C, Cui Z, Ye X. A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2024; 25:e13488. [PMID: 38924248 PMCID: PMC11196902 DOI: 10.1111/mpp.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.
Collapse
Affiliation(s)
- Yuqiang Zhao
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Kun Yang
- Crop Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
- College of Life SciencesLiaocheng UniversityLiaochengChina
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Cancan Zhu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
Arakal BS, Rowlands RS, McCarthy M, Whitworth DE, Maddocks SE, James PE, Livingstone PG. Corallococcus senghenyddensis sp. nov., a myxobacterium with potent antimicrobial activity. J Appl Microbiol 2024; 135:lxae102. [PMID: 38649930 DOI: 10.1093/jambio/lxae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
AIM Corallococcus species are diverse in the natural environment with 10 new Corallococcus species having been characterized in just the last 5 years. As well as being an abundant myxobacterial genus, they produce several secondary metabolites, including Corallopyronin, Corramycin, Coralmycin, and Corallorazine. We isolated a novel strain Corallococcus spp RDP092CA from soil in South Wales, UK, using Candida albicans as prey bait and characterized its predatory activities against pathogenic bacteria and yeast. METHODS AND RESULTS The size of the RDP092CA genome was 8.5 Mb with a G + C content of 71.4%. Phylogenetically, RDP092CA is closely related to Corallococcus interemptor, C. coralloides, and C. exiguus. However, genome average nucleotide identity and digital DNA-DNA hybridization values are lower than 95% and 70% when compared to those type strains, implying that it belongs to a novel species. The RDP092CA genome harbours seven types of biosynthetic gene clusters (BGCs) and 152 predicted antimicrobial peptides. In predation assays, RDP092CA showed good predatory activity against Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii, and Staphylococcus aureus but not against Enterococcus faecalis. It also showed good antibiofilm activity against all five bacteria in biofilm assays. Antifungal activity against eight Candida spp. was variable, with particularly good activity against Meyerozyma guillermondii DSM 6381. Antimicrobial peptide RDP092CA_120 exhibited potent antibiofilm activity with >50% inhibition and >60% dispersion of biofilms at concentrations down to 1 μg/ml. CONCLUSIONS We propose that strain RDP092CA represents a novel species with promising antimicrobial activities, Corallococcus senghenyddensis sp. nov. (=NBRC 116490T =CCOS 2109T), based on morphological, biochemical, and genomic features.
Collapse
Affiliation(s)
- Benita S Arakal
- School of Sports and Health Sciences, Department of Biomedical Sciences, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, United Kingdom
| | - Richard S Rowlands
- School of Sports and Health Sciences, Department of Biomedical Sciences, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, United Kingdom
| | - Michael McCarthy
- School of Sports and Health Sciences, Department of Biomedical Sciences, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, United Kingdom
| | - David E Whitworth
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3FL, United Kingdom
| | - Sarah E Maddocks
- School of Sports and Health Sciences, Department of Biomedical Sciences, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, United Kingdom
| | - Philip E James
- School of Sports and Health Sciences, Department of Biomedical Sciences, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, United Kingdom
| | - Paul G Livingstone
- School of Sports and Health Sciences, Department of Biomedical Sciences, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, United Kingdom
| |
Collapse
|
6
|
Effect of extrusion with hydrocolloid-starch molecular interactions on retrogradation and in vitro digestibility of chestnut starch and processing properties of chestnut flour. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|