1
|
Jiang K, Bai Y, Hou R, Chen G, Liu L, Ciftci ON, Farag MA, Liu L. Advances in dietary polyphenols: Regulation of inflammatory bowel disease (IBD) via bile acid metabolism and the gut-brain axis. Food Chem 2025; 472:142932. [PMID: 39862607 DOI: 10.1016/j.foodchem.2025.142932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Dietary polyphenols represent a diverse group of plant-derived compounds known for their extensive biological activities, offering significant promise in the prevention and treatment of various chronic illnesses. Despite their potential, advancements in their research have been curtailed by challenges in structural analysis and limitations in existing research models. This review marks a pioneering exploration into how bile acids, gut microbiota, and the gut-brain axis serve as conduits through which dietary polyphenols can exert therapeutic effects on Inflammatory Bowel Disease (IBD). This review enriches understanding of their biological functions and addresses common obstacles in the study of natural polyphenols. It provides a comprehensive examination of the role of dietary polyphenols in modulating bile acid metabolism and mitigating IBD, covering aspects such as polyphenols, bile acid metabolism, oxidative stress, inflammation, and the nervous system. This work opens new vistas in appreciating the full spectrum of polyphenol benefits, laying the groundwork for future explorations in this domain.
Collapse
Affiliation(s)
- Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinuo Bai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lingyi Liu
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Ozan N Ciftci
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Mohamed A Farag
- Pharmacognosy department, faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Li J, Wu P, Wang J, Meng X, Ni Y, Fan L. Potassium chloride-assisted heat treatment enhances the de-glycosylation efficiency and xanthine oxidase inhibitory activity of Sophora japonica L. flavonoids. Food Chem X 2024; 24:101854. [PMID: 39398870 PMCID: PMC11470184 DOI: 10.1016/j.fochx.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Salt-assisted heat treatment is considered an effective way to enhance the bioactivities of flavonoids in Flos Sophorae Immaturus tea (FSIt). Herein, sodium chloride (NaCl)- and potassium chloride (KCl)-assisted heat treatment was employed to process FSIt, the components, xanthine oxidase (XO) inhibitory activity, and degradation or conversion kinetics of FSIt flavonoids were recorded. Results showed that KCl-assisted heat treatment significantly increased the XO inhibition rate of FSIt from 28.05 % to 69.50 %. The de-glycosylation of flavonoids was the crucial reason for enhancing XO inhibitory activity. Notably, KCl exhibited a better catalytic effect on the de-glycosylation reaction than NaCl. Meanwhile, conversion kinetics showed that the generation rate of quercetin, kaempferol, and isorhamnetin reached the maximum at 180, 160, 160 °C, respectively. Furthermore, the established artificial neural network model could accurately predict the changes of FSIt flavonoids during salt-assisted heat treatment. Thus, KCl can be used as a valuable food processing adjuvant to enhance the bioactivities of food materials.
Collapse
Affiliation(s)
- Jun Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Peng Wu
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Jing Wang
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Xiangren Meng
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Yang Ni
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Cortijo-Alfonso ME, Yuste S, Friero I, Martínez-Subirà M, Moralejo M, Piñol-Felis C, Rubió-Piqué L, Macià A. Metabolic profiling of (poly)phenolic compounds in mouse urine following consumption of hull-less and purple-grain barley. Food Funct 2024; 15:8300-8309. [PMID: 39046367 DOI: 10.1039/d4fo01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The present study attempted for the first time to investigate the metabolic fate of (poly)phenolic compounds provided by a hull-less and purple grain barley genotype biofortified in anthocyanins. Balb/c mice were supplemented either with standard purified diet (SD) or whole-grain barley supplemented diet (WGB) for six weeks. Subsequently, (poly)phenolic metabolites were determined in urine samples by UPLC-MS/MS, and the principal metabolic pathways were elucidated. Thirty-nine (poly)phenolics compounds were identified in WGB which were distributed between the free (58%) and bound (42%) fractions, encompassing anthocyanins, phenolic acids, flavan-3-ols and flavones. Upon WGB intake, forty-two (poly)phenolic metabolites were identified, predominantly comprising phase-II sulphate, glucuronide, and/or methylated conjugates, along with colonic catabolites. Noteworthy metabolites included peonidin-3-O-glucuronide, peonidin-3-O-6''-O-malonylglucoside, and peonidin-3-O-glucoside among anthocyanins; hydroxyphenylpropanoic acid-O-sulphate among phenolic acids; and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone-O-sulphate among flavan-3-ols. Metabolites like phenylpropionic, phenylacetic, hydroxybenzoic, and hippuric acids were found in both WGB and SD groups, with higher levels after barley consumption, indicating both endogenous and polyphenolic metabolism origins. Overall, this study offers valuable insights into the metabolism of (poly)phenols in purple barley, setting the stage for future investigations into the health benefits linked to the consumption of purple grain barley.
Collapse
Affiliation(s)
| | - Silvia Yuste
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Iván Friero
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Mariona Martínez-Subirà
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Marian Moralejo
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Carme Piñol-Felis
- Department of Medicine and Surgery, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida, Fundació Dr Pifarré IRBLleida, Lleida, Spain
| | - Laura Rubió-Piqué
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Alba Macià
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
4
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
5
|
Cao H, Wang X, Shi M, Guan X, Zhang C, Wang Y, Qiao L, Song H, Zhang Y. Influence of physicochemical changes and aggregation behavior induced by ultrasound irradiation on the antioxidant effect of highland barley β-glucan. Food Chem X 2023; 19:100793. [PMID: 37780315 PMCID: PMC10534095 DOI: 10.1016/j.fochx.2023.100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 10/03/2023] Open
Abstract
The effect of ultrasonic treatment on the structure, morphology and antioxidant activity of highland barley β-glucan (HBG) was investigated. Ultrasonic treatment for 30 min was demonstrated to improve the aqueous solubility of HBG, leading to a decrease in turbidity. Meanwhile, moderate ultrasound was found to obviously reduce the particle size distribution of HBG, and transform the entangled HBG molecules into flexible and extended chains, which reaggregated to form larger aggregates under long-time ultrasonication. The in vitro antioxidant capacity of HBG treated by ultrasonic first increased and then decreased compared to native HBG. Congo red complexation analysis indicated the existence of helix structure in HBG, which was untwisted after ultrasonic treatment. Furthermore, ultrasound treatment influenced the glucopyranose on HBG, which weakened the intramolecular hydrogen bond of HBG. The microscopic morphology showed that the spherical aggregates in native HBG solution were disaggregated and the untangled HBG chains reaggregated with excessive ultrasonication.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Mengmeng Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chunhong Zhang
- Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Yueqin Wang
- Tibet Himalayan Ecological Technology Co., Ltd., Tibet, PR China
| | - Linnan Qiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
6
|
Xu L, Yu Q, Ma L, Su T, Zhang D, Yao D, Li Z. In vitro simulated fecal fermentation of mixed grains on short-chain fatty acid generation and its metabolized mechanism. Food Res Int 2023; 170:112949. [PMID: 37316043 DOI: 10.1016/j.foodres.2023.112949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023]
Abstract
In vitro simulated digestion and fecal fermentation were performed to investigate the influence of mixed grains on gut microbes. In addition, the key metabolic pathways and enzymes associated with short-chain fatty acids (SCFAs) were explored. The mixed grains exhibited an observable regulatory effect on the composition and metabolism of intestinal microorganisms, especially in probiotics, such as Bifidobacterium spp., Lactobacillus spp., and Faecalibacterium spp. WR (wheat + rye), WB (wheat + highland barley) and WO (wheat + oats) tended to generate lactate and acetate, which are related to Sutterella, Staphylococcus, etc. WQ (wheat + quinoa) induced high propionate and butyrate accumulation by consuming lactate and acetate, mainly through Roseburia inulinivorans, Coprococcus catus and Anaerostipes sp., etc. Moreover, bacteria enriched in different mixed grain groups regulated the expression of pivotal enzymes in metabolic pathways and then affected the generation of SCFAs. These results provide new knowledge on the characteristics of intestinal microbial metabolism in different mixed grain substrates.
Collapse
Affiliation(s)
- Lei Xu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Qiaoru Yu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lixue Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tingting Su
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, Heilongjiang, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Di Yao
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
7
|
Lu C, Zhao Z, Huang G, Liu J, Ye F, Chen J, Ming J, Zhao G, Lei L. The contribution of cell wall integrity to gastric emptying and in vitro starch digestibility and fermentation performance of highland barley foods. Food Res Int 2023; 169:112912. [PMID: 37254345 DOI: 10.1016/j.foodres.2023.112912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Studies have shown that the structure, composition, and bioavailability of compounds in whole grains are affected by processing and the role of cells walls. In this study, the effects of different processing methods on highland barley, one of the mostly widely produced whole grains worldwide, were investigated. The processing methods applied were flaking-boiling (HB flake), sand-roasting (Puffed HB), and sand-roasting-milling (Tsamba). Results showed Puffed HB and Tsamba had higher levels of damaged starch content, starch short-range molecular order, and relative crystallinity than HB flake. The half-time of gastric emptying (t1/2) was the slowest for Tsamba (132.3 min) compared to HB flake (122.5 min) and Puffed HB (84.0 min), indicating the slowest gastric emptying rate, which could be attributed to its high viscosity of gastric digesta. After in vitro gastroduodenal digestion, Puffed HB exhibited the lowest starch digestibility and the least amount of β-glucan due to its less damaged cellular structure. Furthermore, Puffed HB resulted in a 21% and 18% higher in vitro production of total short-chain fatty acids than Tsamba and HB flake, respectively. Besides, undigested starch of Puffed HB after in vitro gastroduodenal digestion delayed in vitro fecal fermentation of β-glucan. Our study provided insight into the potential mechanisms of how cell wall integrity affected the gastric emptying, in vitro starch digestibility, and in vitro fecal fermentation of highland barley foods.
Collapse
Affiliation(s)
- Chun Lu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Zixuan Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Guobao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China
| | - Jia Liu
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Cortes-Torres AG, López-Castillo GN, Marín-Torres JL, Portillo-Reyes R, Luna F, Baca BE, Sandoval-Ramírez J, Carrasco-Carballo A. Cymbopogon citratus Essential Oil: Extraction, GC-MS, Phytochemical Analysis, Antioxidant Activity, and In Silico Molecular Docking for Protein Targets Related to CNS. Curr Issues Mol Biol 2023; 45:5164-5179. [PMID: 37367077 DOI: 10.3390/cimb45060328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
This study analyzed the chemical composition of Cymbopogon citratus essential oil from Puebla, México, assessed its antioxidant activity, and evaluated in silico protein-compound interactions related to central nervous system (CNS) physiology. GC-MS analysis identified myrcene (8.76%), Z-geranial (27.58%), and E-geranial (38.62%) as the main components, with 45 other compounds present, which depends on the region and growing conditions. DPPH and Folin-Ciocalteu assays using the leaves extract show a promising antioxidant effect (EC50 = 48.5 µL EO/mL), reducing reactive oxygen species. The bioinformatic tool SwissTargetPrediction (STP) shows 10 proteins as potential targets associated with CNS physiology. Moreover, protein-protein interaction diagrams suggest that muscarinic and dopamine receptors are related to each other through a third party. Molecular docking reveals that Z-geranial has higher binding energy than M1 commercial blocker and blocks M2, but not M4 muscarinic acetylcholine receptors, whereas β-pinene and myrcene block M1, M2, and M4 receptors. These actions may positively affect cardiovascular activity, memory, Alzheimer's disease, and schizophrenia. This study highlights the significance of understanding natural product interactions with physiological systems to uncover potential therapeutic agents and advanced knowledge on their benefits for human health.
Collapse
Affiliation(s)
- Ana G Cortes-Torres
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP-BUAP, Puebla 72570, Mexico
- Laboratorio de Interacción Bacteria-Planta, ICCM-BUAP, Puebla 72570, Mexico
| | - Guiee N López-Castillo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP-BUAP, Puebla 72570, Mexico
| | | | | | - Felix Luna
- Laboratorio de Neuroendocrinología, FCQ-BUAP, Puebla 72570, Mexico
| | - Beatriz E Baca
- Laboratorio de Interacción Bacteria-Planta, ICCM-BUAP, Puebla 72570, Mexico
| | - Jesús Sandoval-Ramírez
- Laboratorio de Síntesis y Modificación de Productos Naturales, FCQ-BUAP, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP-BUAP, Puebla 72570, Mexico
| |
Collapse
|
9
|
Wang Q, Yuan T, Zhu X, Song G, Wang D, Li L, Huang M, Gong J. The phenolics, antioxidant activity and in vitro digestion of pomegranate ( Punica granatum L.) peels: an investigation of steam explosion pre-treatment. Front Nutr 2023; 10:1161970. [PMID: 37139452 PMCID: PMC10149855 DOI: 10.3389/fnut.2023.1161970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Pomegranate peels, the main byproduct of pomegranate production, are rich in phenolic compounds that are known for their effective antioxidant properties and have vast application prospects. In this study, steam explosion, an environmentally friendly technique, was applied to pretreat pomegranate peels for phenol extraction. We investigated the effects of explosion pressure, duration, and particle size on the content of total and individual phenolics, and antioxidant activity of pomegranate peels before and after in vitro digestion. The optimal conditions for a steam explosion for pomegranate peels in terms of total phenol content were a pressure of 1.5 MPa, a maintenance time of 90 s, and a particle size of 40 mesh. Under these conditions, pomegranate peel extract presented a higher yield of total phenols, gallic acid, and ellagic acid. However, it also had a lower content of punicalin and punicalagin, compared to the unexploded peels. There was no improvement in the antioxidant activity of pomegranate peels after the steam explosion. Moreover, the content of total phenol, gallic acid, ellagic acid, punicalin, and punicalagin, as well as the antioxidant activity of pomegranate peels, all increased after gastric digestion. Nevertheless, there was a large variation in the pomegranate peel processed by different pressure, duration, and sieve fractions. Overall, this study demonstrated that steam explosion pre-treatment could be an efficient method for improving the release of phenolics, especially gallic acid, and ellagic acid, from pomegranate peels.
Collapse
Affiliation(s)
- Qi Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Xiaohuan Zhu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Mingquan Huang
- Key Laboratory of Alcoholic Beverages Quality and Safety of China Light Industry, Beijing Technology and Business University, Beijing, China
- Mingquan Huang,
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
- *Correspondence: Jinyan Gong,
| |
Collapse
|