1
|
Wang J, Liu M, Cai Z, Zahid R, Zhang W, Ma D, Li D, Liang Y, Zha L, Zhou Y, Wang L, Yang G, Zheng S, Xu Y. Pathogenic epitope-specific monoclonal antibody-based immunoassay for accurate diagnosis and monitoring of tetranectin in sepsis. Int Immunopharmacol 2024; 143:113473. [PMID: 39541846 DOI: 10.1016/j.intimp.2024.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a fatal consequence of compromised host immunity due to widespread infection. Its pathogenesis has recently been found to be associated with tetranectin (TN), a monocyte-produced plasma protein with a critical disease-associated epitope, P5-5. To develop a rapid and simple method for early monitoring of the disease in clinical settings, a purified monoclonal antibody (12F1 mAb) with high affinity for the human TN pathogenic epitope P5-5 was produced in this study. The linear range of the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on the mAb to detect TN-P5-5 was 4.8-312 ng/mL, and the half-maximal inhibitory concentration (IC50) was 26.99 ng/mL, with a limit of detection of 2.4 ng/mL. Furthermore, the average recovery of intra- and inter-assay were 103.253 ± 2.803 % and 107.778 ± 7.490 %, respectively. Importantly, the competitive ELISA method established using 12F1 revealed signals corresponding to disease severity in patients with sepsis. Furthermore, the specific in vivo recognition of a pathogenic epitope by mAbs can be extended to therapeutic applications. Collectively, the development of an epitope-specific mAb against disease-associated proteins could be utilized accurately and quantitatively for diagnosing and monitoring diseases in clinical blood samples.
Collapse
Affiliation(s)
- Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Rukhshan Zahid
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Die Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yan Liang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Zha
- The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Yun Zhou
- Respiratory Department, The Affiliated Hospital to East China Normal University, Wuhu Second People's Hospital, Wuhu, Anhui 241000, China
| | - Lina Wang
- Anhui Medical University Affiliated Conch Hospital, Wuhu Conch Hospital, Wuhu, Anhui 241001, China
| | - Gang Yang
- Respiratory Department, The Affiliated Hospital to East China Normal University, Wuhu Second People's Hospital, Wuhu, Anhui 241000, China
| | - Shuai Zheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
2
|
Zhang Y, Liu D, Tian Y, Li M, Li Y, Zhou T, Zhao Q, Zhang M, Yu Y, Pan H, Dai Y, Dawa Z, Zheng W, Wang X. Bifunctional nanobody facilitates a colorimetric and fluorescent dual-mode immunoassay of Staphylococcal enterotoxin A. Food Chem 2024; 467:142362. [PMID: 39662243 DOI: 10.1016/j.foodchem.2024.142362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Immunoassay is a diagnostic tool based on the specific binding of antibodies and antigens with widespread applications. Nonetheless, several research obstacles, like poor specific antibodies, the poisonous reagents and unstable results, still remain challenges. Herein, we innovatively reported a colorimetric and fluorescent dual-mode immunoassay based on the bifunctional nanobody for SEA detection. Benefiting from the advantages of nanobodies, the bifunctional protein with both recognition and catalysis was built to identify and catalyze with efficiency to generate the first colorimetric signal. Meanwhile, the introduction of quinine as the natural source of the second fluorescent signal greatly improved the stability and safety of detection. In addition, the proposed method was successfully applied to detecting SEA in food samples with high accuracy and stability. This study integrated the bifunctional nanobody with eco-friendly fluorescent product to provide a specific and green platform for the detection of foodborne toxins.
Collapse
Affiliation(s)
- Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Di Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yudong Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yuhuan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ying Yu
- Key Laboratory of Agricultural Animal Genetics and Breeding, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hu Pan
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, People's Republic of China
| | - Yanna Dai
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, People's Republic of China
| | - Zhuoma Dawa
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, People's Republic of China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an 710065, Shaanxi, People's Republic of China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Fang R, Li Y, Liu F, Liang Y, Wang Y, Zhong G, Xu Z, Hammock BD, Wang H. A new strategy to generate nanobodies for the coumaphos based on the synthesized nanobody libraries. Food Chem 2024; 455:139684. [PMID: 38833869 PMCID: PMC11239888 DOI: 10.1016/j.foodchem.2024.139684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
To break through the bottleneck in preparation of nanobody (Nb) for chemical contaminants induced by the difficulties in the synthesis of immunogen, complexity and unexpectable efficiency of immunization, a novel strategy to generate Nbs based on the designed synthetic Nb libraries with final size up to 109 cfu/mL was adopted and succeeded in selection of anti-coumaphos Nb A4. Furthermore, an affinity-matured mutant Nb 3G was obtained from the secondary library. Finally, an ic-ELISA was established with the limit of detection for coumaphos low to 1.90 ng/mL, 6.4-fold improved than the parent Nb A4, and the detection range from 3.06 to 15.77 ng/mL. Meanwhile, the recovery rate of vegetable samples was from 89.9% to 98.5%. Finally, the accuracy was testified by the standard UPLC-MS/MS method with R2 up to 0.99. Overall, fully synthetic Nb libraries constructed in this work provided an alternative possibility to generate the specific Nbs for chemical contaminants.
Collapse
Affiliation(s)
- Ruyu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingxue Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Guohua Zhong
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Xie M, Lv X, Wang K, Zhou Y, Lin X. Advancements in Chemical and Biosensors for Point-of-Care Detection of Acrylamide. SENSORS (BASEL, SWITZERLAND) 2024; 24:3501. [PMID: 38894291 PMCID: PMC11175246 DOI: 10.3390/s24113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Acrylamide (AA), an odorless and colorless organic small-molecule compound found generally in thermally processed foods, possesses potential carcinogenic, neurotoxic, reproductive, and developmental toxicity. Compared with conventional methods for AA detection, bio/chemical sensors have attracted much interest in recent years owing to their reliability, sensitivity, selectivity, convenience, and low cost. This paper provides a comprehensive review of bio/chemical sensors utilized for the detection of AA over the past decade. Specifically, the content is concluded and systematically organized from the perspective of the sensing mechanism, state of selectivity, linear range, detection limits, and robustness. Subsequently, an analysis of the strengths and limitations of diverse analytical technologies ensues, contributing to a thorough discussion about the potential developments in point-of-care (POC) for AA detection in thermally processed foods at the conclusion of this review.
Collapse
Affiliation(s)
| | | | | | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (M.X.); (X.L.); (K.W.)
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (M.X.); (X.L.); (K.W.)
| |
Collapse
|
5
|
Bounegru AV, Bounegru I. Acrylamide in food products and the role of electrochemical biosensors in its detection: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2824-2839. [PMID: 38669134 DOI: 10.1039/d4ay00466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In this review, the mechanisms of acrylamide formation in food, along with aspects related to its toxicity and associated consumption risks, are investigated, highlighting the potential impact on human health. European regulations regarding acrylamide content in food products are also addressed, emphasizing the importance of monitoring and detecting this substance in nutrition, by public health protection measures. The primary objective of the research is to explore and analyze innovative methods for detecting acrylamide in food, with a particular focus on electrochemical biosensors. This research direction is motivated by the need to develop rapid, sensitive, and efficient monitoring techniques for this toxic compound in food products, considering the associated consumption risks. The research has revealed several significant results. Studies have shown that electrochemical biosensors based on hemoglobin exhibited increased sensitivity and low detection limits, capable of detecting very low concentrations of acrylamide in processed foods. Additionally, it has been found that the use of functionalized nanomaterials, such as carbon nanotubes and gold nanoparticles, has led to the improvement of electrochemical biosensor performance in acrylamide detection. The integration of these technological innovations and functionalization strategies has enhanced the sensitivity, specificity, and stability of biosensors in measuring acrylamides. Thus, the results of this research offer promising perspectives for the development of precise and efficient methods for monitoring acrylamides in food, contributing to the improvement of food quality control and the protection of consumer health.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania.
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| |
Collapse
|
6
|
Zhang Z, Chen Y, Deng P, He Z, Qin F, Chen Q, Wang Z, Pan H, Chen J, Zeng M. Research progress on generation, detection and inhibition of multiple hazards - acrylamide, 5-hydroxymethylfurfural, advanced glycation end products, methylimidazole - in baked goods. Food Chem 2024; 431:137152. [PMID: 37603996 DOI: 10.1016/j.foodchem.2023.137152] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
While baking produces attractive flavors for foods, it also generates various endogenous by-products, including acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), advanced glycation end products (AGEs) and methylimidazole (MI). This review briefly presents the recent studies on the above hazards, and research progress on the formation and control of the above substances in detail. There have been more detailed studies on a single category of hazards. However, few studies and reports have considered the integrated prevention and control of multiple hazards, which is related to the difficulty of analyzing the reaction mechanisms of multiple hazards at multiple scales and under multiple phases in complex food matrices. In this regard, the sample pretreatment methods are a crucial step in achieving simultaneous detection. The coordinated implementation of various methods, including reducing precursor levels, modifying baking conditions and equipment, and incorporating exogenous additives, is necessary to achieve a synchronized reduction in multiple hazardous substances.
Collapse
Affiliation(s)
- Zening Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Gu Y, Guo Y, Deng Y, Song H, Nian R, Liu W. Development of a highly sensitive immunoassay based on pentameric nanobodies for carcinoembryonic antigen detection. Anal Chim Acta 2023; 1279:341840. [PMID: 37827654 DOI: 10.1016/j.aca.2023.341840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM-5) is a well-characterized biomarker for the clinical diagnosis of various cancers. Nanobodies, considered the smallest antibody fragments with intact antigen-binding capacity, have gained significant attention in disease diagnosis and therapy. Due to their peculiar properties, nanobodies have become promising alternative diagnostic reagents in immunoassay. However, nanobodies-based immunoassay is still hindered by small molecular size and low antigen capture efficacy. Therefore, there is a pressing need to develop novel nanobody-based immunoassays with superior performance. RESULTS A novel pentameric nanobodies-based immunoassay (PNIA) was developed with enhanced sensitivity and specificity for CEACAM-5 detection. The binding epitopes of three anti-CEACAM-5 nanobodies (Nb1, Nb2 and Nb3) were analyzed. To enhance the capture and detection efficacy of CEACAM-5 in the immunoassay, we engineered bispecific nanobodies (Nb1-Nb2-rFc) as the capture antibody, and developed the FITC-labeled pentameric nanobodies (Nb3-VT1B) as the detection antibody. The binding affinities of Nb1-Nb2-rFc (1.746 × 10-10) and Nb3-VT1B (1.279 × 10-11) were significantly higher than those of unmodified nanobodies (Nb1-rFc, 4.063 × 10-9; Nb2-rFc, 2.136 × 10-8; Nb3, 3.357 × 10-9). The PNIA showed a linear range of 0.625-160 ng mL-1 with a correlation coefficient R2 of 0.9985, and a limit of detection of 0.52 ng mL-1, which was 24-fold lower than the immunoassay using monomeric nanobody. The PNIA was validated with the spiked human serum. The average recoveries ranged from 91.8% to 102% and the coefficients of variation ranged from 0.026% to 0.082%. SIGNIFICANCE AND NOVELTY The advantages of nanobodies offer a promising alternative to conventional antibodies in disease diagnosis. The novel PNIA demonstrated superior sensitivity and high specificity for the detection of CEACAM-5 antigen. This bispecific or multivalent nanobody design will provide some new insights into the design of immunoassays for clinical diagnosis.
Collapse
Affiliation(s)
- Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Deng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 1301 Guanguang Road, Shenzhen, 518110, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| |
Collapse
|
8
|
Liu ML, Chen ZJ, Huang XQ, Wang H, Zhao JL, Shen YD, Luo L, Wen XW, Hammock B, Xu ZL. A bispecific nanobody with high sensitivity/efficiency for simultaneous determination of carbaryl and its metabolite 1-naphthol in the soil and rice samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122265. [PMID: 37517641 PMCID: PMC10529271 DOI: 10.1016/j.envpol.2023.122265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The simultaneous determination of carbaryl and its metabolite 1-naphthol is essential for risk assessment of pesticide exposure in agricultural and environmental samples. Herein, several bispecific nanobodies (BsNbs) with different lengths of hydrophilic linkers and junction sites were prepared and characterized for the simultaneous recognition of carbaryl and its metabolite 1-naphthol. It was found that the affinity of BsNbs to the analytes could be regulated by controlling linker length and linking terminal. Additionally, molecular simulation revealed that linker lengths affected the conformation of BsNbs, leading to alteration in sensitivity. The BsNb with G4S linker, named G4S-C-N-VHH, showing good thermal stability and sensitivity was used to develop a bispecific indirect competitive enzyme-linked immunosorbent assay (Bic-ELISA). The assay demonstrated a limit of detection of 0.8 ng/mL for carbaryl and 0.4 ng/mL for 1-naphthol in buffer system. Good recoveries from soil and rice samples were obtained, ranging from 80.0% to 112.7% (carbaryl) and 76.5%-110.8% (1-naphthol), respectively. Taken together, this study firstly provided a BsNb with high sensitivity and efficiency against environmental pesticide and its metabolite, and firstly used molecular dynamics simulation to explore the influence of linker on recognition. The results are valuable for the application of immunoassay with high efficiency in the fields of environment and agriculture.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiao-Qing Huang
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Li Zhao
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Wei Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Li JD, Shen X, Xu ZL, Liang YF, Shen YD, Yang JY, Wang H. Molecular Evolution of Antiparathion Nanobody with Enhanced Sensitivity and Specificity Based on Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14758-14768. [PMID: 37768036 DOI: 10.1021/acs.jafc.3c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nanobody (Nb) has gained significant attention in immunoassays owing to its numerous advantages, particularly its ease of molecular evolution. However, the limited understanding of how high sensitivity and specificity attained for antihapten Nbs hamper the development of high-performance Nbs. Herein, the antiparathion Nb (Nb9) we prepared previously was chosen as the model, and an approach based on X-ray crystallography, molecular docking, and rational site-directed saturation mutation for constructing a rapid and effective platform for nanobody evolution was described. Based on the structural analysis, two mutants, namely Nb-D5 (IC50 = 2.4 ± 0.2 ng/mL) and Nb-D12 (IC50 = 2.7 ± 0.1 ng/mL), were selected out from a six-sites directed saturation mutation library, 3.5-fold and 3.1-fold sensitivity enhancement over Nb9 to parathion, respectively. Besides, Nb-D12 exhibited improved sensitivity for quinalphos, triazophos, and coumaphos (5.4-35.4 ng/mL), indicating its broader detection potential. Overall, our study advances an effective strategy for the future rational evolution of Nbs with desirable performance.
Collapse
Affiliation(s)
- Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Li JD, Wu GP, Li LH, Wang LT, Liang YF, Fang RY, Zhang QL, Xie LL, Shen X, Shen YD, Xu ZL, Wang H, Hammock BD. Structural Insights into the Stability and Recognition Mechanism of the Antiquinalphos Nanobody for the Detection of Quinalphos in Foods. Anal Chem 2023; 95:11306-11315. [PMID: 37428097 PMCID: PMC10829938 DOI: 10.1021/acs.analchem.3c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Nanobodies (Nbs) have great potential in immunoassays due to their exceptional physicochemical properties. With the immortal nature of Nbs and the ability to manipulate their structures using protein engineering, it will become increasingly valuable to understand what structural features of Nbs drive high stability, affinity, and selectivity. Here, we employed an anti-quinalphos Nb as a model to illustrate the structural basis of Nbs' distinctive physicochemical properties and the recognition mechanism. The results indicated that the Nb-11A-ligand complexes exhibit a "tunnel" binding mode formed by CDR1, CDR2, and FR3. The orientation and hydrophobicity of small ligands are the primary determinants of their diverse affinities to Nb-11A. In addition, the primary factors contributing to Nb-11A's limited stability at high temperatures and in organic solvents are the rearrangement of the hydrogen bonding network and the enlargement of the binding cavity. Importantly, Ala 97 and Ala 34 at the active cavity's bottom and Arg 29 and Leu 73 at its entrance play vital roles in hapten recognition, which were further confirmed by mutant Nb-F3. Thus, our findings contribute to a deeper understanding of the recognition and stability mechanisms of anti-hapten Nbs and shed new light on the rational design of novel haptens and directed evolution to produce high-performance antibodies.
Collapse
Affiliation(s)
- Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Pei Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Li-Hua Li
- Future Technology Institute, South China Normal University, 510631, China
| | - Lan-Teng Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ru-Yu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiu-Ling Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Ling Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California-Davis, California 95616, United States
| |
Collapse
|
11
|
Ionescu RE. Ultrasensitive Electrochemical Immunosensors Using Nanobodies as Biocompatible Sniffer Tools of Agricultural Contaminants and Human Disease Biomarkers. MICROMACHINES 2023; 14:1486. [PMID: 37630022 PMCID: PMC10456424 DOI: 10.3390/mi14081486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Nanobodies (Nbs) are known as camelid single-domain fragments or variable heavy chain antibodies (VHH) that in vitro recognize the antigens (Ag) similar to full-size antibodies (Abs) and in vivo allow immunoreactions with biomolecule cavities inaccessible to conventional Abs. Currently, Nbs are widely used for clinical treatments due to their remarkably improved performance, ease of production, thermal robustness, superior physical and chemical properties. Interestingly, Nbs are also very promising bioreceptors for future rapid and portable immunoassays, compared to those using unstable full-size antibodies. For all these reasons, Nbs are excellent candidates in ecological risk assessments and advanced medicine, enabling the development of ultrasensitive biosensing platforms. In this review, immobilization strategies of Nbs on conductive supports for enhanced electrochemical immune detection of food contaminants (Fcont) and human biomarkers (Hbio) are discussed. In the case of Fcont, the direct competitive immunoassay detection using coating antigen solid surface is the most commonly used approach for efficient Nbs capture which was characterized with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) when the signal decays for increasing concentrations of free antigen prepared in aqueous solutions. In contrast, for the Hbio investigations on thiolated gold electrodes, increases in amperometric and electrochemical impedance spectroscopy (EIS) signals were recorded, with increases in the antigen concentrations prepared in PBS or spiked real human samples.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie CS 42060, 10004 Troyes, France
| |
Collapse
|
12
|
Bai M, Wang Y, Zhang C, Wang Y, Wei J, Liao X, Wang J, Anfossi L, Wang Y. Nanobody-based immunomagnetic separation platform for rapid isolation and detection of Salmonella enteritidis in food samples. Food Chem 2023; 424:136416. [PMID: 37247600 DOI: 10.1016/j.foodchem.2023.136416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Rapid separation and identification of Salmonella enteritidis (S. enteritidis) in food is of great importance to prevent outbreaks of foodborne diseases. Herein, by using O and H antigens as targets, an epitope-based bio-panning strategy was applied to isolate specific nanobodies towards S. enteritidis. This method constitutes an efficient way to obtain specific antibody fragments and test pairwise nanobodies. On this basis, a double nanobody-based sandwich enzyme-linked immunosorbent assay (ELISA) coupled with immunomagnetic separation (IMS) was developed to rapid enrich and detect S. enteritidis in food. The detection limit of the IMS-ELISA was 3.2 × 103 CFU/mL. In addition, 1 CFU of S. enteritidis in food samples can be detected after 4-h cultivation, which was shortened by 2 h after IMS. The IMS-ELISA strategy could avoid matrix interference and shorten the enrichment culture time, which has great potential for application in monitoring bacterial contamination in food.
Collapse
Affiliation(s)
- Mengfan Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yueqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ye Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10137 Turin, TO, Italy
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Ye ZH, Chen XT, Zhu HY, Liu XQ, Deng WH, Song W, Li DX, Hou RY, Cai HM, Peng CY. Aggregating-agent-assisted surface-enhanced Raman spectroscopy–based detection of acrylamide in fried foods: A case study with potato chips. Food Chem 2023; 403:134377. [DOI: 10.1016/j.foodchem.2022.134377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
|