1
|
Yan T, Sun J, Zheng J, Yang J. An analysis combining proteomics and transcriptomics revealed a regulation target of sea cucumber autolysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101274. [PMID: 38906042 DOI: 10.1016/j.cbd.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Sea cucumber is a valuable seafood product and autolysis is the main concern for the aquaculture industry. This study employed proteomics and transcriptomics to investigate the autolysis mechanism of sea cucumbers. The fresh sea cucumber was exposed to UV light to induce autolysis. The body wall samples were cut off to analyze by proteomics and transcriptomics. The angiotensin-converting enzyme (ACE) inhibitor of teprotide and the activator of imatinib were gastric gavage to live sea cucumbers, respectively, to identify the regulation target. Autolysis occurrence was evaluated by appearance, soluble peptide, and hydroxyproline content. Four gene-protein pairs were ACE, AJAP10923, Heme-binding protein 2-like, and Ficolin-2-like. Only the ACE protein and gene changed synchronously and a significant down-regulation of ACE occurred in the autolysis sea cucumbers. Teprotide led to a 1.58-fold increase in the TCA-soluble protein content and a 1.57-fold increase in hydroxyproline content. No significant differences were observed between imatinib-treated sea cucumbers and fresh ones regarding TCA-soluble protein content or hydroxyproline levels (P > 0.05). ACE inhibitor accelerated the autolysis of sea cucumber, but ACE activator inhibited the autolysis. Therefore, ACE can serve as a regulatory target for autolysis in sea cucumbers.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghe Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Lv Y, Hao S, Wang Y, Xing S, Tan M. Hepatocytes and mitochondria dual-targeted astaxanthin WPI-SCP nanoparticles for the alleviation of alcoholic liver injury. Int J Biol Macromol 2024; 285:137992. [PMID: 39581423 DOI: 10.1016/j.ijbiomac.2024.137992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Alcoholic liver injury is one of the most frequent liver diseases around the world, and nutritional intervention has been considered as an effective way to alleviate alcohol liver injury. To alleviate the liver damage caused by alcohol, a type of astaxanthin (AXT) loaded nanoparticles were designed for dual targeting of hepatocytes and mitochondria. Firstly, galactooligosaccharides (GOS) were conjugated to whey protein isolate (WPI) and sea cucumber peptide (SCP) via the Maillard reaction, achieving a grafting degree of 29 %, then triphenylphosphonium (TPP) was linked by amide reaction. Secondly, AXT was loaded into the complex of SCP-WPI-GOS-TPP (SWGT) to form AXT@SCP-WPI-GOS-TPP(AXT@SWGT) nanoparticles. The Pearson coefficient increased from 0.69 to 0.76 after introducing TPP targeting moiety. In vivo experiments showed that AXT@SWGT significantly alleviated liver injury caused by alcohol. The vacuolation and fat accumulation associated with alcoholic liver injury was alleviated. The alcohol dehydrogenase and aldehyde dehydrogenase activity were improved by 296.88 % and 34.19 %, respectively. AXT@SWGT significantly enhanced the biological activities of glutathione by 76.86 %, catalase by 145.42 %, and superoxide dismutase by 33.48 %, thereby alleviating oxidative stress. The results indicated that the AXT@SWGT might have the potential to intervene alcoholic liver injury via the dual targeting strategy.
Collapse
Affiliation(s)
- Yueqi Lv
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Shanghua Xing
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Luo X, Zhang Z, Zheng Z, Zhang W, Ming T, Jiao L, Su X, Xu J, Kong F. Characterization of a Bacterium Isolated from Hydrolyzed Instant Sea Cucumber Apostichopus japonicus Using Whole-Genome Sequencing and Metabolomics. Foods 2024; 13:3662. [PMID: 39594079 PMCID: PMC11593622 DOI: 10.3390/foods13223662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autolysis in the sea cucumber Apostichopus japonicus is typically triggered by degradation caused by microorganisms within their bodies. However, information on this topic remains limited. Recently, we isolated and purified a bacterial strain from hydrolyzed instant sea cucumber samples. To investigate its potential role in the autolysis process, this study employed whole-genome sequencing and metabolomics to explore its genetic and metabolic characteristics. The identified strain was classified as Lysinibacillus xylanilyticus and designated with the number XL-2024. Its genome size is 5,075,210 bp with a GC content of 37.33%, encoding 5275 genes. Functional database comparisons revealed that the protein-coding genes were distributed among glucose metabolism hydrolase, metal hydrolase, lysozyme, cell wall hydrolase, and CAZymes. Compared to 20 closely related strains, L. xylanilyticus XL-2024 shared 1502 core homologous genes and had 707 specific genes. These specific genes were mainly involved in the carbohydrate metabolism pathway and exhibited glycosyl bond hydrolase activity. Metabolomic analysis showed that L. xlanilyticus XL-2024 produced several metabolites related to polysaccharide degradation, including peptidase, glucanase, and pectinase. Additionally, the presence of antibacterial metabolites such as propionic acid and ginkgo acid among its metabolites may enhance the stability of the sea cucumber hydrolysate. In summary, L. xylanilyticus XL-2024 may play a pivotal role in the autolysis of A. japonicus. The results of this study provide a strong foundation for understanding how to prevent autolysis in A. japonicus and for better utilizing L. xylanilyticus XL-2024.
Collapse
Affiliation(s)
- Xin Luo
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo 315211, China
| | - Zhixuan Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
| | - Zhangyi Zheng
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo 315211, China
| | - Wenwen Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo 315211, China
| | - Tinghong Ming
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo 315211, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
| | - Jiajie Xu
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo 315211, China
| | - Fei Kong
- School of Marine Science, Ningbo University, Ningbo 315211, China; (X.L.); (Z.Z.); (Z.Z.); (W.Z.); (T.M.); (L.J.); (X.S.)
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315211, China
| |
Collapse
|
4
|
Popov A, Kozlovskaya E, Rutckova T, Styshova O, Makhankov V, Vakhrushev A, Hushpulian D, Gazaryan I, Son O, Tekutyeva L. Matrikines of Sea Cucumbers: Structure, Biological Activity and Mechanisms of Action. Int J Mol Sci 2024; 25:12068. [PMID: 39596138 PMCID: PMC11594131 DOI: 10.3390/ijms252212068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Matrikines (MKs), the products of enzymatic fragmentation of various extracellular matrix (ECM) proteins, regulate cellular activity by interacting with specific receptors. MKs affect cell growth, proliferation, and migration, can induce apoptosis and autophagy, and are also effectively used in biomedicine and functional nutrition. Recently, there has been great interest in the structural features and biological activity of MKs from various sources. This review summarized and analyzed the results of modern research on MKs from sea cucumbers, primarily from trepang (MKT). Particular attention is paid to the analysis of the existing knowledge on the antioxidant, anti-inflammatory and adaptogenic activities of these MKs and the possible mechanisms of their protective action.
Collapse
Affiliation(s)
- Aleksandr Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (T.R.); (O.S.); (V.M.); (A.V.)
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (T.R.); (O.S.); (V.M.); (A.V.)
| | - Tatyana Rutckova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (T.R.); (O.S.); (V.M.); (A.V.)
| | - Olga Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (T.R.); (O.S.); (V.M.); (A.V.)
| | - Vyacheslav Makhankov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (T.R.); (O.S.); (V.M.); (A.V.)
| | - Aleksey Vakhrushev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia; (T.R.); (O.S.); (V.M.); (A.V.)
| | - Dmitry Hushpulian
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 13/4 Myasnitskaya Str., Moscow 117997, Russia; (D.H.); (I.G.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninski Prospect 33, Moscow 1190721, Russia
| | - Irina Gazaryan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 13/4 Myasnitskaya Str., Moscow 117997, Russia; (D.H.); (I.G.)
- Department of Chemical Enzymology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Art and Sciences, Pace University, 861 Bedford Road, Pleasantville, NY 10570, USA
| | - Oksana Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok 690922, Russia; (O.S.); (L.T.)
| | - Ludmila Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok 690922, Russia; (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Volno-Nadezhdinskoye 692481, Russia
| |
Collapse
|
5
|
Yang F, Yang Y, Xiao D, Kim P, Lee J, Jeon YJ, Wang L. Anti-Photoaging Effects of Antioxidant Peptide from Seahorse ( Hippocampus abdominalis) in In Vivo and In Vitro Models. Mar Drugs 2024; 22:471. [PMID: 39452879 PMCID: PMC11509181 DOI: 10.3390/md22100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Overexposure to ultraviolet (UV) radiation can lead to photoaging, which contributes to skin damage. The objective of this study was to evaluate the effects of an antioxidant peptide (SHP2) purified from seahorse (Hippocampus abdominalis) alcalase hydrolysate on UVB-irradiated skin damage in human keratinocyte (HaCaT) and human dermal fibroblast (HDF) cells and a zebrafish model. The data revealed that SHP2 significantly enhanced cell viability by attenuating apoptosis through the reduction of intracellular reactive oxygen species (ROS) levels in UVB-stimulated HaCaT cells. Moreover, SHP2 effectively inhibited ROS, improved collagen synthesis, and suppressed the secretion of matrix metalloproteinases (MMPs) in UVB-irradiated HDF cells. SHP2 restored the protein levels of HO-1, Nrf2, and SOD, while decreasing Keap1 expression in UVB-treated HDF, indicating stimulation of the Keap1/Nrf2/HO-1 signaling pathway. Furthermore, an in vivo study conducted in zebrafish confirmed that SHP2 inhibited photoaging by reducing cell death through the suppression of ROS generation and lipid peroxidation. Particularly, 200 µg/mL of SHP2 exerted a remarkable anti-photoaging effect on both in vitro and in vivo models. These results demonstrate that SHP2 possesses antioxidant properties and regulates skin photoaging activities, suggesting that SHP2 may have the potential for use in the development of cosmetic products.
Collapse
Affiliation(s)
- Fengqi Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (F.Y.); (D.X.)
| | - Yang Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
| | - Dandan Xiao
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (F.Y.); (D.X.)
| | - Poongho Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (P.K.); (J.L.)
| | - Jihee Lee
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (P.K.); (J.L.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (F.Y.); (D.X.)
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| |
Collapse
|
6
|
Zhao Y, Hao L, Meng Y, Li L, Wang W, Zhao R, Zhao P, Zhang J, Wang M, Ren J, Zhang L, Yin X, Xia X. Screening and heterologous expression of an antimicrobial peptide SCAK33 with broad-spectrum antimicrobial activity resourced from sea cucumber proteome. Int Microbiol 2024:10.1007/s10123-024-00595-7. [PMID: 39316254 DOI: 10.1007/s10123-024-00595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Antimicrobial peptides (AMPs) are a family of short defense proteins that are naturally produced by all organisms and have great potential as effective substitutes for small-molecule antibiotics. The present study aims to excavate AMPs from sea cucumbers and achieve their heterologous expression in prokaryotic Escherichia coli. Using MytC as a probe, a cysteine-stabilized peptide SCAK33 with broad-spectrum antimicrobial activity was discovered from the proteome of Apostichopus japonicas. The SCAK33 showed inhibitory effects on both gram positive and gram negative bacteria with MICs of 3-28 μM, and without significant hemolysis activity in rat blood erythrocyte. Especially, it exhibited good antimicrobial activity against Bacillus megaterium, B. subtilis, and Vibrio parahaemolyticus with the MIC of 3, 7, and 7 μM, respectively. After observation by scanning electronic microscopy (SEM) and confocal laser scanning microscope (CLSM), it was found that the cell membrane of bacteria was severely damaged. Furthermore, the recombinant SCAK33 (reSCAK33) was heterologously expressed by fusion with SUMO tag in E. coli BL21(DE3), and the protein yield reached 70 mg/L. The research will supplement the existing quantity of sea cucumber AMPs and provide data support for rapid mining and biological preparation of sea cucumber AMPs.
Collapse
Affiliation(s)
- Yanqiu Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Lujiang Hao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Longfen Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Weitao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Rui Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Jiyuan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Jingli Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Xuekui Xia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
7
|
Ye J, Zheng L, Pan W, Huang Y, Zhang N, Yang D, Yang Y, Zheng B, Zhang X, Xiao M. Sulfated polysaccharide from Apostichopus japonicus viscera exhibits anti-inflammatory properties in vitro and in vivo. Int J Biol Macromol 2024; 280:135500. [PMID: 39276906 DOI: 10.1016/j.ijbiomac.2024.135500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Polysaccharides from sea cucumbers are known for their biological activities, but little is known about those from sea cucumber viscera. The present study isolated a sulfated polysaccharide (SCVP-2) from the viscera of Apostichopus japonicas, which had a molecular weight of 209.1 kDa. SCVP-2 comprised 66.3 % total sugars, 2.1 % uronic acid, 4.5 % proteins, and 25.5 % sulfate groups, containing glucosamine, galactosamine, glucose, galactose, and fucose. FT-IR and NMR analyses identified SCVP-2 as a fucoidan sulfate with sulfation patterns of the fucose branches as Fuc2S, Fuc4S, and Fuc0S. SEM and AFM analyses showed irregular clusters and linear conformations. SCVP-2 demonstrated strong anti-inflammatory properties both in vitro and in vivo. In lipopolysaccharide (LPS)-induced inflammation in macrophage RAW264.7 cells, SCVP-2 significantly reduced nitric oxide (NO) and cytokine secretion (IL-1β, IL-6, TNF-α). Additionally, it downregulated the expression of these cytokine genes. Furthermore, the anti-inflammatory mechanism of SCVP-2 was related to the inhibition of the MAPKs and NF-κB pathways. SCVP-2's anti-inflammatory capacity was confirmed in acute inflammation models, including xylene-induced ear swelling and acetic acid-induced peritoneal capillary permeability, and in high-fat diet-induced systemic low-grade chronic inflammation. In conclusion, SCVP-2 exhibits significant anti-inflammatory activity, suggesting its potential for development as a functional food ingredient or therapeutic agent for inflammation-related diseases.
Collapse
Affiliation(s)
- Jing Ye
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China.
| | - Linjing Zheng
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Weipeng Pan
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China
| | - Yayan Huang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Na Zhang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Dongda Yang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China
| | - Yucheng Yang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Bingde Zheng
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Meitian Xiao
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
8
|
Huang L, Wu Y, Fan Y, Su Y, Liu Z, Bai J, Zhao X, Li Y, Xie X, Zhang J, Chen M, Wu Q. The growth-promoting effects of protein hydrolysates and their derived peptides on probiotics: structure-activity relationships, mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39154217 DOI: 10.1080/10408398.2024.2387328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Lactic acid bacteria (LAB) are the main probiotics currently available in the markets and are essential for maintaining gut health. To guarantee probiotic function, it is imperative to boost the culture yield of probiotic organisms, ensure the sufficient viable cells in commercial products, or develop effective prebiotics. Recent studies have shown that protein hydrolysates and their derived peptides promote the proliferation of probiotic in vitro and the abundance of gut flora. This article comprehensively reviews different sources of protein hydrolysates and their derived peptides as growth-promoting factors for probiotics including Lactobacillus, Bifidobacterium, and Saccharomyces. We also provide a preliminary analysis of the characteristics of LAB proteolytic systems focusing on the correlation between their elements and growth-promoting activities. The structure-activity relationship and underlying mechanisms of growth-promoting peptides and their research perspectives are thoroughly discussed. Overall, this review provides valuable insights into growth-promoting protein hydrolysates and their derived peptides for proliferating probiotics in vivo or in vitro, which may inspire researchers to explore new options for industrial probiotics proliferation, dairy products fermentation, and novel prebiotics development in the future.
Collapse
Affiliation(s)
- Lanyan Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Wu
- Guangdong Huankai Biotechnology Co., Ltd, Guangzhou, China
| | - Yue Fan
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Yue Su
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Zihao Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Jianling Bai
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Xinyu Zhao
- Guangdong Huankai Biotechnology Co., Ltd, Guangzhou, China
| | - Ying Li
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Xinqiang Xie
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Moutong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| |
Collapse
|
9
|
Mi R, Fu Z, Jiang J, Gao S, Guan X, Wang X, Zhou Z. Sea Cucumber Viscera Processed by Protease Hydrolysis Combined with Cordyceps militaris Fermentation Protect Caco-2 Cells against Oxidative Damage via Enhancing Antioxidant Capacity, Activating Nrf2/HO-1 Pathway and Improving Cell Metabolism. Antioxidants (Basel) 2024; 13:988. [PMID: 39199234 PMCID: PMC11351466 DOI: 10.3390/antiox13080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Excessive reactive oxygen species (ROS) may lead to oxidative damage and metabolic disorder. The pathogenesis of human bowel inflammation is closely related to oxidative damage of intestinal epithelial cells caused by ROS. This study aimed to explore the high-value utilization of the byproducts of sea cucumber in antioxidant food for colitis prevention. The technology of protease hydrolysis combined with Cordyceps militaris fermentation was used to obtain fermented sea cucumber viscera protease hydrolysates (FSVHs). The results revealed that FSVH could enhance antioxidant capacity and alleviate oxidative damage and apoptosis by activating the Nrf2/HO-1 pathway and triggering the self-protection immune mechanisms. Moreover, the FSVH supplementation could upregulate antioxidant-related metabolic pathways of Caco-2 cells such as glutathione metabolism, confirming the enhanced antioxidant capacity of damaged cells. In summary, FSVH could exert protective effects on Caco-2 cells in response to oxidative damage, providing a promising prospect for sea cucumber resource utilization and colitis prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zunchun Zhou
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, China; (R.M.); (Z.F.); (J.J.); (S.G.); (X.G.); (X.W.)
| |
Collapse
|
10
|
Harini R, Natarajan V, Sunil CK. Sea cucumber significance: Drying techniques and India's comprehensive status. J Food Sci 2024; 89:3995-4018. [PMID: 38847764 DOI: 10.1111/1750-3841.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
Sea cucumbers, members of the echinoderm class Holothuroidea, are marine invertebrates with ecological significance and substantial commercial value. With approximately 1700 species, these organisms contribute to marine ecosystems through nutrient cycling and face various threats, including overfishing and habitat loss. Despite their importance, they are extensively exploited for diverse applications, from seafood to pharmaceuticals. This study investigates sea cucumbers' nutritional profile and bioactive elements, emphasizing their role as sources of essential compounds with potential health benefits. The demand for sea cucumbers, especially in dried form, is significant, prompting exploration into various drying techniques. Examining the global trade in sea cucumbers highlights their economic importance and the conservation challenges they face. Conservation efforts, such as awareness campaigns and international collaboration, are evaluated as essential steps in combating illicit trade and promoting the sustainable stewardship of sea cucumber populations. PRACTICAL APPLICATION: Around 1700 species of sea cucumbers were identified as vital ecological scavengers in the Holothuroidea class. High commercial value due to their health benefits, particularly their demonstrated inhibitory effect against various types of cancer. "Beche-de-mer" holds a 90% market share and is regarded as a luxury food item in Southeast Asian countries. Due to overexploitation, the species is classified as Schedule I under the Wildlife Protection Act (WPA) in India, prompting the implementation of a blanket ban on their harvesting to ensure its conservation.
Collapse
Affiliation(s)
- Ravi Harini
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
11
|
Lu Z, Shen S, Lin S. The neuroprotective effects of SFGDI on sirtuin 3-related oxidative stress by regulating the Sirt3/SOD/ROS pathway and energy metabolism in BV2 cells. Food Funct 2024; 15:6692-6704. [PMID: 38828499 DOI: 10.1039/d4fo01512f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recently, the investigation of neuroprotective peptides has gained attention in addressing memory impairment and cognitive decline. Although the potential neuroprotective peptide Serine-Phenylalanine-Glycine-Aspartic acid-Isoleucine (SFGDI) has been identified from sea cucumber, the molecular mechanisms remain unclear. This study was conducted to explore the neuroprotection of SFGDI against 3-TYP-induced oxidative stress in BV2 cells. The results showed a retention rate of 76.70% during in vitro simulated gastrointestinal digestion and an absorption rate of 10.41% in a rat-everted gut sac model for SFGDI. Two hours following the administration of SFGDI via gavage in mice, a notable fluorescence was observed in the brain, indicating a potential neuroprotection of SFGDI through its interactions with nerve cells. By utilizing a model of oxidative stress injury induced by 3-TYP in BV2 cells, it was determined that pretreatment with SFGDI (50-200 μg mL-1) resulted in a dose-dependent reduction in the acetylated SOD level, leading to enhanced SOD activity and reduced levels of ROS and MDA. In addition, this pretreatment triggered an increase in unsaturated lipid levels, which helped maintain the intracellular lipid metabolism balance and preserve the mitochondrial function and glycolysis levels to regulate energy metabolism. The results of this study indicate that SFGDI demonstrates neuroprotective properties through its modulation of the Sirt3/SOD/ROS pathway, regulation of lipid metabolism, and enhancement of energy metabolism in BV2 cells. These findings suggest potential novel therapeutic approaches for addressing Sirt3-related memory deficits and neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhiqiang Lu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| | - Siqi Shen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| |
Collapse
|
12
|
Ratnawati H, Wargasetia TL, Larissa L, Alvitri L, Bryant K. HOLOTHURIA SCABRA METHANOL EXTRACT INHIBITS CANCER GROWTH THROUGH TGF-β/PI3K/PTEN SIGNALING PATHWAY IN BREAST CANCER MICE MODEL. Exp Oncol 2024; 46:22-29. [PMID: 38852056 DOI: 10.15407/exp-oncology.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Molecules and cytokines can be targeted in cancer therapy. Transforming growth factor-beta (TGF-β) is a cytokine that acts on protein kinase receptors in the plasma membrane. The signaling pathway of TGF-β can trigger the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, a signal transduction pathway important in cancer growth and development. However, this PI3K/AKT cascade can be inhibited by phosphatase and tensin homolog (PTEN) tumor suppressor genes. AIM To determine the inhibitory effect of Holothuria scabra methanol extract (HSE) on breast cancer growth through the TGF-β/PI3K pathways and PTEN tumor suppressor gene on a breast cancer (BC) mice model. MATERIALS AND METHODS Female C57BL6 mice were subcutaneously injected with carcinogen DMBA 1 mg/kg body weight (BW) and fed a high-fat diet (HFD). Mice were randomly divided into five groups (n = 6): negative control (NC) administered with a standard diet, positive control (PC) administered with DMBA and HFD, and three treatment groups (T1, T2, and T3) treated with HSE doses of 0.33, 0.66, and 0.99 g/kg BW for 12 weeks. TGF-β concentration in the blood serum of mice was assessed by ELISA and the PIK3CA and PTEN gene expression by qRT-PCR. RESULTS The treatment with HSE resulted in a significant decrease in TGF-β concentrations in the blood sera of treatment groups T1 (35.31 ± 17.33), T2 (43.31 ± 17.42), and T3 (48.67 ± 20.94) pg/mL compared to the PC group (162.09 ± 11.60) pg/mL (p < 0.001). However, only HSE at a dose of 0.99 g/kg BW decreased the PIK3CA gene expression (p = 0.026), and at a dose of 0.66 g/kg BW increased the PTEN expression up to 4.93-fold. CONCLUSION HSE is capable of inhibiting the TGF-β/PIK3CA pathway and increasing the PTEN gene expression.
Collapse
Affiliation(s)
- Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | | | - Larissa Larissa
- Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Liana Alvitri
- Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Keane Bryant
- Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| |
Collapse
|
13
|
Abdo AAA, Hou Y, Hassan FA, Al-Sheraji SH, Aleryani H, Alanazi A, Sang Y. Antioxidant potential and protective effect of modified sea cucumber peptides against H 2O 2-induced oxidative damage in vitro HepG2 cells and in vivo zebrafish model. Int J Biol Macromol 2024; 266:131090. [PMID: 38537858 DOI: 10.1016/j.ijbiomac.2024.131090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
In this study, modified sea Cucumber Peptides (SCP) were prepared by reacting with xylooligosaccharide (XOS) and alginate oligosaccharides (AOS) via glycation. Free radical inhibitory and inhibition of oxidative stress of modified SCP was evaluated using human hepatocellular carcinoma (HepG2) cells and zebrafish embryos. LC-MS analysis revealed that SCPs mainly consist of 40 active peptides, with an average molecular weight of 1122.168 Da and an average length of 11 amino acid residues. For amino acid composition, L-Asparagine, L-Methionine, and L-Aspartic Acid were dominant amino acids in SCP. The result showed that the antioxidant ability of SCP against 2,2-Diphenyl-1-picrylhydrazyl (DPPH), superoxide anion radical (O-2), and Hydroxyl Radical (OH) was significantly improved after modification. In HepG2 cells, the modified SCP showed stronger protection than native SCP native against H2O2-induced oxidative stress by enhancing cell viability and reducing radical oxygen species (ROS) generation. The inhibition effect of SCP was increased after modification with XOS and AOS by 13 % and 19 % respectively. Further studies displayed that the activity of antioxidative enzymes, including Superoxide dismutase (SOD), Glutathione Peroxidase (GPx), and catalase (CAT), was remarkably enhanced, whereas malondialdehyde (MDA) level was reduced compared with native SCP and H2O2-treated groups, thus, improving the intracellular antioxidant defenses. The gene expression analysis showed that the mechanism underlying the modified SCP protective effect may be linked with the capability to regulate Nuclear factor-erythroid factor 2-related factor 2 (NRF2) gene expression. The protective effect of modified SCP against H2O2 in vitro was confirmed in vivo by reduced toxicity in zebrafish embryos via improvement of mortality rate, hatching rate, heart beating rate, and deformities of the zebrafish model. However, SCPAOS conjugate displayed greater antioxidant potentials compared to the SCPXOS, the different effects between SCPAOS and SCPXOS could be due to their different antioxidant activity. Thus, modified SCP could be potentially used as a novel nutraceutical in the preparation of anti-aging food and medicine.
Collapse
Affiliation(s)
- Abdullah Abdulaziz Abbod Abdo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, 70270 Ibb, Yemen
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Fouad Abdulrahman Hassan
- Department of Medical Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Ibb University, 70270 Ibb, Yemen
| | - Sadeq Hasan Al-Sheraji
- Department of Medical Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Ibb University, 70270 Ibb, Yemen
| | - Hamzah Aleryani
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, 70270 Ibb, Yemen
| | - Abdulmohsen Alanazi
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
14
|
Lu Z, Yang J, Xu X, Liu R, Lin S. Regulation mechanisms of sea cucumber peptides against scopolamine-induced memory disorder and novel memory-improving peptides identification. Eur J Pharmacol 2024; 968:176430. [PMID: 38369274 DOI: 10.1016/j.ejphar.2024.176430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Memory impairment affects cognition and information processing, and attention, leading to a decline in life quality of patients. Previous studies have shown the memory-improving effects of sea cucumber peptides. This study further explored the memory-improving mechanisms of sea cucumber peptides using scopolamine-induced memory-impaired mice and identified novel memory-improving peptides within low molecular weight peptide fractions. The sea cucumber peptides were categorized into three groups based on their molecular weights: SCP-L (molecular weight greater than 10 kDa), SCP-M (weight between 3 kDa and 10 kDa), and SCP-S (molecular weight less than 3 kDa). The results showed that SCP-S improved behavioral performance by regulating cholinergic system disorder and reducing oxidative stress levels, distinguishing itself from SCP-M and SCP-L. Further, SCP-S was found to exhibit a well ability in alleviating the degree of neuroinflammation dependent on microglia and promoting synaptic plasticity. Additionally, a novel memory-improving peptide Ser-Phe-Gly-Asp-Ile (SFGDI) was identified by EASY-nano-LC/MS/MS after simulated digestion-absorption coupling of in silico technologies from SCP-S. SFGDI protected against oxidative stress and regulated cholinergic system in scopolamine-induced PC12 cells. These findings suggest that SCP-S and SFGDI might be considered as potential memory-improving food for people suffering from memory disorders.
Collapse
Affiliation(s)
- Zhiqiang Lu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Jingqi Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Xiaomeng Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Ruowen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China.
| |
Collapse
|
15
|
Liu C, Ding X, Xie Y, Chen C, Zhao M, Duan Y, Yuan G, Ren J. Isolation and purification of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu peptides and study of their antioxidant effects and mechanisms. Front Pharmacol 2024; 15:1353871. [PMID: 38389921 PMCID: PMC10883310 DOI: 10.3389/fphar.2024.1353871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidative stress is a state of imbalance between oxidant and antioxidant effects in the body, which is closely associated with aging and many diseases. Therefore, the development of antioxidants has become urgent. In this study, we isolated three polypeptides, G-6-Y, P-8-R, and F-10-W, from Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu (E. sessiliflorus), based on the antioxidant and anti-aging properties of Eleutherococcus, and screened the most powerful free radical scavenging peptide P-8-R. Ultraviolet B (UVB)-induced oxidative stress damage in the skin was established to test the efficacy of P-8-R. In cellular experiments, P-8-R not only prevented oxidative stress damage in HaCaT cells, reduced intracellular reactive oxygen species levels, and inhibited the overexpression of matrix metalloproteinases but also inhibited apoptosis via the mitochondria-dependent apoptotic pathway; in animal experiments, P-8-R was able to prevent oxidative stress damage in the skin and reduce skin collagen loss by inhibiting the overexpression of MMPs to prevent mouse skin aging. In conclusion, the present study contributes to an in-depth understanding of the active compounds of Eleutherococcus, which is of great significance for the pharmacodynamic mechanism and industrial development of Eleutherococcus, and P-8-R is likely to become a potential antioxidant and anti-aging drug or skin care cosmetic in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, China
| | - Xuying Ding
- College of Pharmacy, Beihua University, Jilin, China
| | - Yining Xie
- College of Pharmacy, Beihua University, Jilin, China
| | - Chen Chen
- Affiliated Hospital of Yanbian University, Yanji, China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Yanming Duan
- College of Pharmacy, Beihua University, Jilin, China
| | - Guojing Yuan
- College of Pharmacy, Beihua University, Jilin, China
| | - Junxi Ren
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
16
|
Gu X, Zhao R, Li H, Dong X, Meng M, Li T, Zhao Q, Li Y. Patterns of the Nutrients and Metabolites in Apostichopus japonicus Fermented by Bacillus natto and Their Ability to Alleviate Acute Alcohol Intoxication. Foods 2024; 13:262. [PMID: 38254563 PMCID: PMC10814447 DOI: 10.3390/foods13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to understand the changes in nutrient composition and differences in metabolites in Apostichopus japonicus fermented by Bacillus natto and their function in alleviating acute alcohol intoxication (AAI) through in vivo studies. The results showed no significant difference between the basic components of sea cucumber (SC) and fermented sea cucumber (FSC). The SC proteins were degraded after fermentation, and the amino acid content in FSC was significantly increased. The differentially abundant metabolites of SC and FSC were identified by LC-MS/MS. The contents of amino acid metabolites increased after fermentation, and arachidonic acid metabolism was promoted. The results demonstrated that FSC alleviated AAI by improving the activities of alcohol-metabolizing enzymes and antioxidant enzymes in the liver but did not alleviate the accumulation of triglycerides. Our results will provide beneficial information for the development and application of new products from FSC.
Collapse
Affiliation(s)
- Xingyu Gu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Ran Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Haiman Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Xinyu Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Meishan Meng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
| | - Qiancheng Zhao
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
17
|
Wang P, Zhang Y, Hu J, Tan BK. Bioactive Peptides from Marine Organisms. Protein Pept Lett 2024; 31:569-585. [PMID: 39253911 DOI: 10.2174/0109298665329840240816062134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Marine organisms represent promising bioactive peptide resources with diverse biological activities such as antioxidant, antimicrobial, antihypertensive, anti-fatigue, and immunoregulatory activities. Despite many studies on marine bioactive peptides, there is a dearth of comprehensive review articles on the emerging trends that encompass the production techniques and the biological applications of marine bioactive peptides. In this review, we summarize the major research and findings related to marine bioactive peptides, encompassing aspects of their production, purification, biological activities, nanotechnology-based strategies, and their potential applications. Enzymatic hydrolysis currently stands out as the most commonly used method for producing marine bioactive peptides; the downstream purification process often includes a combination of multiple purification techniques. Due to their diverse biological properties, marine peptides have garnered considerable interest for industrial applications as active ingredients in the food, pharmaceutical, and cosmetics industries. Additionally, the incorporation of encapsulation strategies such as nano emulsion, nanoliposome, and microemulsions holds promise for significantly enhancing the bioavailability and bioactivity of marine peptides. Future research should also prioritize the systematic identification and validation of the potential health benefits of marine peptides by both in vitro and in vivo animal models, along with the conduct of human clinical trials.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bee Kang Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
18
|
Lu C, Wang X, Ma J, Wang M, Liu W, Wang G, Ding Y, Lin Z, Li Y. Chemical substances and their activities in sea cucumber Apostichopus japonicus: A review. Arch Pharm (Weinheim) 2024; 357:e2300427. [PMID: 37853667 DOI: 10.1002/ardp.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
19
|
Huang S, Wang K, Hua Z, Abd El-Aty AM, Tan M. Size-controllable food-grade nanoparticles based on sea cucumber polypeptide with good anti-oxidative capacity to prolong lifespan in tumor-bearing mice. Int J Biol Macromol 2023; 253:127039. [PMID: 37742886 DOI: 10.1016/j.ijbiomac.2023.127039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Liver cancer, a malignancy with a rising global incidence, poses a significant challenge in achieving effective treatment outcomes. As food-derived nutrient, sea cucumber peptide (SCP) has shown promising anticancer effects. Therefore, we explored the nanodelivery systems to encapsulate SCP to enhance its stability in the gastrointestinal tract and improve absorption within the tumor microenvironment. This study aimed to develop size-controllable multifunctional nanoparticles using SCP, procyanidins (PCs), and vanillin through molecular assembly via a one-pot Mannich condensation approach. These food-grade nanoparticles demonstrated water solubility and exhibited a spherical structure with sizes ranging from 441 to 1360 nm, depending on the concentration of the reactants. In vitro cell experiments demonstrated that SCP nanoparticles modified with PCs effectively reduced the generation of reactive oxygen species from H2O2 and acrylamide while maintaining normal levels of mitochondrial membrane potential. Furthermore, in vivo nutrition intervention studies conducted on tumor-bearing mice revealed that mice treated with SCP nanoparticles exhibited a survival rate of 40 %, which was significantly higher than the 0 % and 20 % survival rates observed in the control and SCP-treated groups, respectively. These findings suggest that SCP nanoparticles, possessing antioxidative properties and controllable sizes, hold potential for precision nutrition in the field of cancer treatment.
Collapse
Affiliation(s)
- Shasha Huang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Hua
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Zheng Z, Sun N, Mao C, Tang Y, Lin S. Val-Leu-Leu-Tyr (VLLY) Alleviates Ethanol-Induced Gastric Mucosal Cell Impairment by Improving Mitochondrial Fission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18722-18734. [PMID: 37980612 DOI: 10.1021/acs.jafc.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ethanolic gastric mucosal impairment is one of the most common disorders in the gastrointestinal system. In this study, we investigated the potential alleviating effects of sea cucumber peptides on Ges-1 impairment caused by ethanol and the associated mechanisms. The sea cucumber peptide VLLY could promote the proliferation and migration of healthy Ges-1 cells. After ethanol injury, VLLY peptide treatment could greatly promote the migration of Ges-1 cells, scavenge intracellular and mitochondrial ROS, reverse mitochondrial fission and F-actin depolymerization, and improve mitochondrial respiration. VLLY peptide restored mitochondrial dynamics by downregulating Drp1 and Fis1 and upregulating Mfn2 against excessive mitochondrial fission. In addition, the VLLY peptide maintained the mitochondrial membrane potential, ablated the leakage of cytochrome c to the cytoplasm, upregulated the expression of the antiapoptotic factor Bcl-XL, decreased the expression of the proapoptotic factors of Bax, BAD, and cleaved caspase-3, and finally blocked the mitochondria-related apoptotic pathway. These findings strongly suggested that sea cucumber peptides could promote proliferation and migration of healthy Ges-1 cells and reverse ethanol-induced excess mitochondrial fission and maintain mitochondrial homeostasis through the Fis1/Bax pathway, thereby improving ethanol-induced apoptosis. VLLY offers a new perspective for improving the ethanolic gastric mucosal epithelial cell injury.
Collapse
Affiliation(s)
- Zhihong Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chuwen Mao
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Tang
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
21
|
Yu S, Guo H, Ji Z, Zheng Y, Wang B, Chen Q, Tang H, Yuan B. Sea Cucumber Peptides Ameliorate DSS-Induced Ulcerative Colitis: The Role of the Gut Microbiota, the Intestinal Barrier, and Macrophage Polarization. Nutrients 2023; 15:4813. [PMID: 38004208 PMCID: PMC10674221 DOI: 10.3390/nu15224813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The incidence of ulcerative colitis (UC) is increasing annually. There are few treatments for UC patients, and some drugs have serious side effects. Sea cucumber peptide (SCP) has anti-inflammatory, antioxidant and other biological activities, and various sea cucumber species are in pharmaceutical development. However, relevant studies on the effects of SCP on UC progression are still lacking. In this study, a mouse model of acute colitis was induced by 3% dextran sulfate (DSS), and the effect of 500 mg/kg SCP on colitis was investigated. The results showed that SCP can alleviate DSS-induced colon damage and intestinal barrier damage. SCP significantly inhibited the expression of inflammatory factors and oxidative stress in UC mice. SCP reversed the intestinal microbiota dysregulation induced by DSS, inhibited the growth of Sutterella, Prevotella_9 and Escherichia-Shigella harmful bacteria, and increased the abundance of Lachnospiraceae_NK4A136_group. At the same time, SCP treatment significantly inhibited the LPS-induced polarization of M1 macrophages, which may be mediated by two monopeptides, IPGAPGVP and TGPIGPPGSP, via FPR2. In conclusion, SCP can protect against colitis by modulating the intestinal microbiota composition and the intestinal barrier and inhibiting the polarization of M1 macrophages.
Collapse
Affiliation(s)
- Song Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Bingbing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Qingqing Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Hongyu Tang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| |
Collapse
|
22
|
Mao J, Zhao Y, Wang L, Wu T, Jin Y, Meng J, Zhang M. Sea Cucumber Peptide Alleviates Ulcerative Colitis Induced by Dextran Sulfate Sodium by Alleviating Gut Microbiota Imbalance and Regulating miR-155/SOCS1 Axis in Mice. Foods 2023; 12:3434. [PMID: 37761144 PMCID: PMC10530247 DOI: 10.3390/foods12183434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Sea cucumber peptides have been proven to exhibit a variety of biological activities. Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of the rectum and colon with increasing incidence and long duration, and is difficult to cure. The effect of sea cucumber peptide on UC is currently unknown. In this study, 1.5% dextran sulfate sodium (DSS) was added to the drinking water of mice to induce a UC model, and the daily doses of sea cucumber peptide (SP) solution of 200 mg/kg·BW, 500 mg/kg·BW, and 1000 mg/kg·BW were given to UC mice to detect the relieving effect of SP. The results showed that SP can reduce the disease activity index (DAI) of UC mice induced by DSS and can alleviate colon shortening, intestinal tissue damage, and the loss of intestinal tight junction proteins (Claudin-1, Occludin). SP decreased the spleen index, pro-inflammatory factors (IL-1β, IL-6, TNF-α), and myeloperoxidase (MPO) levels in UC mice. SP can alleviate the imbalance of gut microbiota in UC mice, increase the abundance of the Lachnospiraceae NK4A136 group, Prevotellaceae UCG-001, and Ligilactobacillus, and reduce the abundance of Bacteroides and the Eubacterium rum group, as well as alleviating the decrease in short-chain fatty acid (SCFA) content in the feces of UC mice. Notably, SP inhibited miR-155 expression in the colon tissue of UC mice and increased its target protein, suppressor of cytokine signaling 1 (SOCS1), which acts as an inflammatory inhibitor. In summary, the ameliorative effect of SP on UC may be achieved by improving the imbalance of gut microbiota and regulating the miR-155/SOCS1 axis. This study provides a new idea for developing SP as a nutritional supplement to maintain intestinal health.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Min Zhang
- China−Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
23
|
Mao J, Li S, Fu R, Wang Y, Meng J, Jin Y, Wu T, Zhang M. Sea Cucumber Hydrolysate Alleviates Immunosuppression and Gut Microbiota Imbalance Induced by Cyclophosphamide in Balb/c Mice through the NF-κB Pathway. Foods 2023; 12:foods12081604. [PMID: 37107399 PMCID: PMC10137554 DOI: 10.3390/foods12081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the effect of sea cucumber hydrolysate (SCH) on immunosuppressed mice induced by cyclophosphamide (Cy). Our findings demonstrated that SCH could increase the thymus index and spleen index, decrease the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, increase the serum IgG and small intestinal sIgA levels, reduce small intestinal and colon tissue damage, and activate the nuclear factor-κB (NF-κB) pathway by increasing TRAF6 and IRAK1 protein levels, as well as the phosphorylation levels of IκBα and p65, thereby enhancing immunity. In addition, SCH alleviated the imbalance of the gut microbiota by altering the composition of the gut microbiota in immunosuppressed mice. At the genus level, when compared with the model group, the relative abundance of Dubosiella, Lachnospiraceae, and Ligilactobacillus increased, while that of Lactobacillus, Bacteroides, and Turicibacter decreased in the SCH groups. Moreover, 26 potential bioactive peptides were identified by oligopeptide sequencing and bioactivity prediction. This study's findings thus provide an experimental basis for further development of SCH as a nutritional supplement to alleviate immunosuppression induced by Cy as well as provides a new idea for alleviating intestinal damage induced by Cy.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - RongRong Fu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
24
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
25
|
Ming Y, Wang Y, Xie Y, Dong X, Nakamura Y, Chen X, Qi H. Polyphenol extracts from Ascophyllum nodosum protected sea cucumber (Apostichopus japonicas) body wall against thermal degradation during tenderization. Food Res Int 2023; 164:112419. [PMID: 36738022 DOI: 10.1016/j.foodres.2022.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
To retard the protein degradation during sea cucumber processing, polyphenol extracts from Ascophyllum nodosum (PhE) was used as a potential antioxidant to maintain the structural integrity of sea cucumber body wall. Accordingly, the protection effects of PhE (0, 0.5, 1.0 and 1.5 mg PhE/g SFBW) against thermal degradation of the solid fragments of body wall (SFBW) have been investigated in order to evaluate their impact on the oxidation level and structural changes. Electronic Spin Resonance results showed that PhE could significantly inhibit the occurrence of oxidation by scavenging the free radicals. The effect of PhE on chemical analysis of soluble matters in SFBW was characterized by SDS-PAGE and HPLC. Compared with thermally treated SFBW, samples with PhE presented a decrease in protein dissolution. Thermal treatment resulted in the disintegration of collagen fibrils and fibril bundles in SFBW samples, while the density of collagen fibrils was increased, and the porosity decreased in samples with PhE. The results of FTIR and intrinsic tryptophan fluorescence confirmed that the structures of SFBW were modified by PhE. Besides, the denaturing temperature and decomposition temperature were both improved with the addition of PhE. These results suggested that PhE appeared to have a positive effect on lowering oxidation and improving thermostability and structural stability of SFBW, which could provide a theoretical basis for protecting sea cucumber body wall against degradation during thermal tenderization.
Collapse
Affiliation(s)
- Yu Ming
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yingzhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yuqianqian Xie
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Xiufang Dong
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China.
| |
Collapse
|
26
|
Man J, Abd El‐Aty AM, Wang Z, Tan M. Recent advances in sea cucumber peptide: Production, bioactive properties, and prospects. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jiacong Man
- School of Mechanical Engineering and Automation Dalian Polytechnic University Dalian Liaoning China
| | - A. M. Abd El‐Aty
- Department of Pharmacology, Faculty of Veterinary Medicine Cairo University Giza Egypt
- Department of Medical Pharmacology, Medical Faculty Ataturk University Erzurum Turkey
| | - Zuzhe Wang
- Dalian Blue Peptide Technology Research & Development Co., Ltd. Liaoning China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| |
Collapse
|
27
|
Metabolism Profile of Mequindox in Sea Cucumbers In Vivo Using LC-HRMS. Antibiotics (Basel) 2022; 11:antibiotics11111599. [DOI: 10.3390/antibiotics11111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, the metabolism behavior of mequindox (MEQ) in sea cucumber in vivo was investigated using LC-HRMS. In total, nine metabolites were detected and identified as well as the precursor in sea cucumber tissues. The metabolic pathways of MEQ in sea cucumber mainly include hydrogenation reduction, deoxidation, carboxylation, deacetylation, and combinations thereof. The most predominant metabolites of MEQ in sea cucumber are 2-iso-BDMEQ and 2-iso-1-DMEQ, with deoxidation and carbonyl reduction as major metabolic pathways. In particular, this work first reported 3-methyl-2-quinoxalinecarboxylic acid (MQCA) as a metabolite of MEQ, and carboxylation is a major metabolic pathway of MEQ in sea cucumber. This work revealed that the metabolism of MEQ in marine animals is different from that in land animals. The metabolism results in this work could facilitate the accurate risk assessment of MEQ in sea cucumber and related marine foods.
Collapse
|
28
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
29
|
Lin P, Shen N, Yin F, Guo SD. Sea cucumber-derived compounds for treatment of dyslipidemia: A review. Front Pharmacol 2022; 13:1000315. [PMID: 36188620 PMCID: PMC9515789 DOI: 10.3389/fphar.2022.1000315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Dyslipidemias are disorders of plasma levels of lipids, such as elevated levels of total cholesterol and triglyceride, that are associated with various human diseases including cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Statins are the first-line drugs for treatment of dyslipidemia. However, a substantial proportion of patients cannot reach the recommended LDL-c level even with the highest tolerated doses of statins, and there is no available drug specifically for NAFLD therapy. Sea cucumbers are one of the widely distributed invertebrates, and are an important resource of food and medicine. Sea cucumbers have many valuable nutrients including saponins, fatty acids, phospholipids, cerebrosides, sulfated polysaccharides, as well as proteins and peptides. In recent years, these natural products derived from sea cucumbers have attracted attentions for treatment of CVD and NAFLD because of their lipid-lowering effect and low toxicity. However, the hypolipidemic mechanisms of action and the structure-activity relationship of these bioactive components have not been well-documented in literature. This review article summarizes the signaling pathways and the potential structure-activity relationship of sea cucumber-derived bioactive compounds including saponins, lipids, carbohydrates as well as peptides and proteins. This article will provide information useful for the development of sea cucumber-derived lipid-lowering compounds as well as for investigation of hypolipidemic compounds that are derived from other natural resources.
Collapse
|