1
|
Hensen JP, Hoening F, Bogdanovic T, Schieber A, Weber F. Pectin forms polymeric pigments by complexing anthocyanins during red winemaking and ageing. Food Res Int 2024; 188:114442. [PMID: 38823830 DOI: 10.1016/j.foodres.2024.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.
Collapse
Affiliation(s)
- Jan-Peter Hensen
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Fiona Hoening
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Tamara Bogdanovic
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Fabian Weber
- Faculty of Organic Agricultural Sciences, Organic Food Quality, University of Kassel, Nordbahnhofstrasse 1a, 37213 Witzenhausen, Germany.
| |
Collapse
|
2
|
Zhai H, Ling M, Li S, Chen B, Zhao X, Tong W, Cheng C, Li J, Shi Y, Duan C, Lan Y. The characteristics of polysaccharide composition of red wines in China: Effects of grape varieties, origins and winemaking techniques. Food Chem X 2024; 22:101283. [PMID: 38524777 PMCID: PMC10957457 DOI: 10.1016/j.fochx.2024.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In this work, the polysaccharide profile of different grapes and red wines in China was studied and the influences of two common winemaking techniques on the components of wine were analyzed. The soluble polysaccharide content in the skins of native grape species in China (non-Vitis vinifera grapes) was significantly higher than that of Vitis vinifera species, while the terroir effect on V. vinifera varieties was limited. The combination of the enzyme preparation and the addition of mannoproteins (MPs) at the beginning of alcoholic fermentation (MP1 + E) could increase the contents of MPs and acid polysaccharides (APS) compared to the control wines. Meanwhile, better color characteristics and higher level of anthocyanin derivatives were observed. However, MP1 + E treatment reduced the content of polysaccharides rich in arabinose and galactose (PRAGs) due to enzymatic hydrolysis. The study will provide useful information for winemakers to regulate the wine polysaccharide profile.
Collapse
Affiliation(s)
- Hongyue Zhai
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bainian Chen
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xu Zhao
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Wenzhe Tong
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chifang Cheng
- Xinjiang CITIC Guoan Wine Co. Ltd., Manasi, Changji 832200, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
3
|
Feifel S, Weilack I, Markusevics E, Zimmermann D, Wegmann-Herr P, Weber F, Richling E, Durner D. Influence of Potential Alcohol in Grapes on Phenolic and Sensory Characteristics of Red Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12725-12737. [PMID: 38776412 DOI: 10.1021/acs.jafc.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Potential alcohol, as obtained by grape maturity, affects the extraction of phenolics during winemaking. The extent to which potential alcohol is correlated to phenolic and sensory characteristics of red wine was investigated. Decoupling of the ripening kinetics of grape constituents due to climate change emphasizes this question. The impact of potential alcohol, as naturally obtained by grape maturity or adjusted by sugar addition, representing high sugar but low phenolic maturity, on wine characteristics was investigated for two varieties over two vintages. Enhancement of potential alcohol to late harvest conditions did not achieve the sensory characteristics of wine made from phenolic mature grapes. An experimental model was developed revealing the contribution of potential alcohol to phenolic and sensory characteristics. In Pinot noir, anthocyanins correlated well with natural potential alcohol but were not influenced by enhanced potential alcohol. In Cabernet Sauvignon, polymeric pigments provided the most accurate information about grape maturity perception in wine.
Collapse
Affiliation(s)
- Sandra Feifel
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Ingrid Weilack
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Erika Markusevics
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Daniel Zimmermann
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
| | - Pascal Wegmann-Herr
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
| | - Fabian Weber
- Faculty of Organic Agricultural Sciences, Department of Organic Food Quality, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Dominik Durner
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
- Department of Applied Logistics and Polymer Sciences, University of Applied Sciences Kaiserslautern, Carl-Schurz-Straße 10-16, 66953 Pirmasens, Germany
| |
Collapse
|
4
|
Weilack I, Mehren L, Schieber A, Weber F. Grape-derived pectic polysaccharides alter the tannin and pigment composition of Cabernet Sauvignon red wines. Curr Res Food Sci 2023; 6:100506. [PMID: 37188318 PMCID: PMC10176157 DOI: 10.1016/j.crfs.2023.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Tannins, anthocyanins, and polymeric pigments are essential phenolic constituents of red wine because they provide color, color stability, and mouthfeel properties like astringency. The behavior of these compounds is significantly affected by pectic polysaccharides, whereby the extent of their influence on red wine quality depends on their structural features and their interactions with the polyphenols. In the present study, the composition of the pectic polysaccharides of commercially available Cabernet Sauvignon wines and their impact on anthocyanin, tannin, and polymeric pigment analyses was characterized. This was accomplished by preparation of polysaccharide deprived wines and comparison of the polyphenolic composition of both, the wines and their corresponding polysaccharide-free counterparts. The results show that the cell wall fragments enhance the spectral absorbance of anthocyanins by facilitating anthocyanin self-association, leading to a co-pigmentation-like effect. Low molecular weight pectins like rhamnogalacturonan II and polygalacturonic acids with a low degree of esterification are assumed to form soluble complexes with anthocyanins and also prevent protein precipitation of tannins, which was reduced by 6-13%. High molecular weight pectins with a high degree of esterification lead to the increased precipitability of pigments and tannins by a factor of 1.3 to 32.4 and 1.1 to 1.9, respectively, seemingly impairing the incorporation of anthocyanins in tannins to form precipitable polymeric pigments that are responsible for the longevity of red wine color. The increased precipitability of the pigments due to the interactions with the polysaccharides may indicate the formation of pigmented yet non-covalent aggregates that show comparable properties to the covalently formed precipitable pigments. The formation of those non-covalent structures may affect red wine color stability and astringency.
Collapse
|
5
|
Zhai HY, Li SY, Zhao X, Lan YB, Zhang XK, Shi Y, Duan CQ. The compositional characteristics, influencing factors, effects on wine quality and relevant analytical methods of wine polysaccharides: a review. Food Chem 2022; 403:134467. [DOI: 10.1016/j.foodchem.2022.134467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|